Видимое движение планет и Солнца. Эклиптика, точка весеннего равноденствия, неравномерное движение Солнца по эклиптике. Видимое движение планет и символы Движение солнца и планет

Местоположение орбиты, орбитальное движение, а также период вращения вокруг оси и её наклон − важные характеристики, которые в некоторых случаях могут полностью определять условия на поверхности планеты. В данной статье я проведу обзор указанных выше характеристик применимо к планетам Солнечной системы и опишу отличительные особенности планет, обусловленные их движением и расположением.

Меркурий

Ближайшая к Солнцу планета является, пожалуй, самой особенной в рамках темы, рассматриваемой в этой статье. А обусловлена эта исключительность Меркурия сразу несколькими причинами. Во-первых – орбита Меркурия самая вытянутая среди всех планет Солнечной системы (эксцентриситет составляет 0,205). Во-вторых − у планеты самый маленький наклон оси к плоскости своей орбиты (всего несколько сотых градуса). В-третьих – соотношение между периодами осевого вращения и орбитального обращения составляет 2/3.

Из-за сильной вытянутости орбиты, разница в расстоянии от Меркурия до Солнца в разных точках орбиты может составлять более чем до полутора раз – от 46 млн. км в перигелии, до 70 млн в афелии. Во столько же раз меняется орбитальная скорость планеты – от 39 км/с в афелии и до 59 км/с в перигелии. В результате такого движения, всего за 88 земных суток (один меркурианский год) угловой размер Солнца при наблюдении с поверхности Меркурия меняется от 104-х угловых минут (что в 3 раза больше, чем на Земле) в перигелии, до 68-ми угловых минут (в 2 раза больше, чем на Земле) в афелии. После чего начинается сближение с Солнцем, и оно снова увеличивается в диаметре до 104-х минут при приближении к перигелию. А разница в орбитальной скорости сказывается на скорости видимого перемещения Солнца на фоне звёзд. Значительно быстрее в перигелии, чем в афелии.

Особенности планеты

Существует и ещё одна особенность видимого движения Солнца на небе Меркурия. В ней, помимо его орбитального движения, замешано ещё и очень медленное осевое вращение (один оборот вокруг оси относительно звёзд занимает почти 59 земных суток). Суть в том, что на небольшом участке орбиты вблизи перигелия угловая скорость орбитального движения планеты больше, чем угловая скорость осевого вращения. В результате этого Солнце, перемещаясь с востока на запад за счёт осевого вращения, начинает замедлять свой ход, останавливается и некоторое время двигается с запада на восток. Поскольку в это время направление и скорость орбитального движения являются преобладающими факторами. При удалении от перигелия видимое движение Солнца относительно горизонта снова становится зависимым от осевого вращения планеты и продолжается с востока на запад.

Соотношение 2/3 периодов обращения вокруг оси и вокруг Солнца приводит к тому, что солнечные сутки на Меркурии длятся 176 земных суток (по 88 суток день и ночь). Т.е. в течение одного меркурианского года, Солнце находится над горизонтом и столько же под ним. Вследствие чего, на 2-х долготах в течение солнечных суток можно наблюдать тройной восход Солнца.

Как это происходит

Солнце сначала медленно выползает из-за горизонта, двигаясь с востока на запад. Затем Меркурий проходит перигелий, и Солнце начинает двигаться на восток, опускаясь обратно за горизонт. После прохождения перигелия Солнце снова двигается с востока на запад относительно горизонта, теперь уже взойдя окончательно, и при этом будет быстро уменьшаться в размерах. Когда Солнце будет близко к точке зенита, Меркурий пройдёт афелий и Солнце начнёт склоняться к западу, увеличиваясь в размерах. Затем, в момент когда Солнце уже практически зайдёт за западный горизонт, Меркурий по орбите снова подойдёт к перигелию, и Солнце взойдёт обратно из-за западного горизонта. По прохождении перигелия Солнце сядет за горизонт окончательно. После чего взойдёт на востоке только через меркурианский год (88 суток) и весь цикл движений повторится. На остальных долготах Меркурий будет проходить перигелий в тот момент, когда Солнце будет уже не у горизонта. И, следовательно, тройного восхода за счёт обратного движения в этих местах происходить не будет.

Разница температур

Из-за медленного вращения и в крайней степени разреженной атмосферы, поверхность Меркурия с солнечной стороны очень сильно нагревается. Особенно это касается так называемых «горячих долгот» (меридианы, на которых Солнце находится в зените при прохождении планетой перигелия). В таких местах температура поверхности может достичь 430 °C. При этом вблизи полярных регионов, из-за незначительно наклона оси планеты, есть места, куда вообще не попадают солнечные лучи. Там температура держится в районе -200 °C.

Подводя итог по Меркурию, видим, что результатом сочетания его отличительного орбитального движения, медленного вращения, уникального соотношения периодов вращения вокруг оси и обращения вокруг Солнца, а также малого наклона оси − является весьма необычное движение Солнца по небу, причём с заметным изменением размеров и самые большие температурные перепады в Солнечной системе.

Венера

В противоположность орбите Меркурия, орбита Венеры наоборот наиболее круглая среди орбит всех остальных планет. В её случае разница в расстоянии до Солнца в перигелии и афелии различается всего на 1,5 млн. км (107,5 млн. км и 109 млн. км соответственно). Но ещё интересней тот факт, что планета обладает ретроградным вращением вокруг оси, так что если бы можно было увидеть Солнце с поверхности Венеры, то в течение дня оно бы всё время двигалось с запада на восток. Причём двигалось бы очень медленно, поскольку скорость осевого вращения Венеры ещё меньше, чем у Меркурия и относительно звёзд, планета завершает оборот за 243 земных суток, что больше, чем длительность года (оборот вокруг Солнца занимает 225 земных суток).

Сочетание периодов орбитального движения и осевого вращения делает продолжительность солнечных суток равной приблизительно 117 земным суткам. Сам по себе наклон оси к плоскости орбиты невелик и составляет 2,7 градуса. Однако с учётом того, что планета вращается ретроградно, она оказывается фактически полностью перевёрнута. В этом случае величина наклона оси к плоскости орбиты составляет 177,3 градуса. Впрочем, на условия на поверхности планеты все указанные выше параметры практически не влияют. Плотная атмосфера очень хорошо удерживает тепло, за счёт чего температура почти не меняется. И неважно в какое время суток, и на какой широте при этом находиться.

Земля

Земная орбита весьма близка по форме к круговой, хотя её эксцентриситет чуть больше, чем у орбиты Венеры. Но разница в расстоянии до Солнца, которая составляет 5 млн. км в перигелии и афелии (147,1 млн. км и 152,1 млн. км до Солнца соответственно), не оказывает существенного влияния на климат. Наклон оси к плоскости орбиты в 23 градуса благоприятен, поскольку обеспечивает привычную для нас смену времён года. Это не допускает столь суровых условий в полярных регионах, которые могли бы быть при нулевом наклоне как у Меркурия. Ведь атмосфера Земли не столь хорошо задерживает тепло, как атмосфера Венеры. Относительно высокая скорость осевого вращения тоже благоприятна. Это не позволяет поверхности сильно нагреться в течение дня и остыть в течение ночи. В противном случае при периодах вращения как у Меркурия и тем более Венеры, температурные перепады на Земле были бы схожими с теми, что на Луне.

Марс

Марс обладает почти такими же периодом обращения вокруг оси и её наклоном к плоскости орбиты, как и Земля. Так что смена времён года происходит по схожему принципу, вот только сезоны длятся почти вдвое дольше, чем на Земле. Ведь на оборот вокруг Солнца требуется опять же почти вдвое большее время. Но есть тут и существенное отличие − орбита Марса имеет довольно заметный эксцентриситет. За счёт чего расстояние до Солнца меняется от 206,5 млн. км до 249,2 млн. км, а этого уже достаточно, чтобы заметно повлиять на климат планеты. Вследствие этого, лето в южном полушарии жарче, чем в северном, однако при этом и зима холоднее, чем в северном.

Планеты–гиганты

У планет-гигантов довольно небольшие эксцентриситеты орбит (от 0,011 у Нептуна, до 0,057 у Сатурна), однако расположены гиганты очень далеко. Следовательно, орбиты длинные, а планеты оборачиваются по ним весьма неторопливо. Юпитеру для полного оборота необходимо 12 земных лет; Сатурну – 29,5; Урану − 84, а Нептуну − 165. Для всех гигантов характерна высокая, по сравнению с планетами земной группы, скорость осевого вращения − 10 часов у Юпитера; 10,5 у Сатурна; 16 у Нептуна и 17 у Урана, за счёт этого планеты заметно сплюснуты у полюсов.

Сильнее всего сплюснут Сатурн, его экваториальный и полярный радиус различаются на 6 тыс. км. Наклоны осей у гигантов различны: совсем небольшой наклон у Юпитера (3 градуса); у Сатурна и Нептуна наклоны составляют 27 и 28 градусов соответственно, что близко к земному и марсианскому, соответственно там есть смена времён года, только в зависимости от удаления от Солнца, различается и длительность сезонов; выбивается в этом плане Уран – его ось, кольца и орбиты всех спутников наклонены на 98 градусов к плоскости орбиты планеты, так что в процессе оборота вокруг Солнца Уран поочерёдно обращён к Солнцу то одним полюсом, то другим.

Несмотря на разнообразие приведённых выше орбитальных и физических характеристик планет-гигантов, условия в их атмосферах в большей степени определяются процессами в недрах, которые в настоящий момент ещё толком не изучены.

В. Грибков

О пыль миров! О рой священных пчел!
Я исследил, измерил, взвесил, счел,
Дал имена, составил карты, сметы
Но ужас звезд от знания не потух.
М. Волошин

Урок 1/7

Тема: Видимое движение планет.

Цель: Познакомить учащихся с составом Солнечной системы, понятий о космических и небесных явлениях, связанных с обращением планет вокруг Солнца и видимым движением других космических тел: петлеобразным движением планет, конфигурациями и их видами, периодами обращения.

Задачи :
1. Обучающая : систематизация понятий о небесных явлениях: видимом движении и конфигурациях планет, наблюдающихся в результате взаимного перемещения и расположения небесных светил относительно земного наблюдателя; подробное рассмотрение причин и характеристик космического явления обращения планет вокруг Солнца и его следствий - небесных явлений: видимого движения внутренних и внешних планет на небесной сфере и их конфигураций (верхнего и нижнего соединений, элонгаций, противостояний, квадратур), атмосферной рефракции.
2. Воспитывающая : формирование научного мировоззрения в ходе знакомства с историей человеческого познания и объяснения повседневно наблюдаемых небесных явлений; борьба с религиозными предрассудками.
3. Развивающая : формирование умений выполнять упражнения на применение основных формул сферической астрономии при решении соответствующих расчетных задач и применять подвижную карту звездного неба, звездные атласы, справочники, Астрономический календарь для определения положения и условий видимости небесных светил и протекания небесных явлений.

Знать 1-й уровень (стандарт)- общую характеристику состава Солнечной системы (сведения о телах и характерные закономерности), видами конфигурации, понятием синодического и сидерического периодов обращения и их взаимосвязи. 2-й уровень - общую характеристику состава Солнечной системы (сведения о телах и характерные закономерности), видами конфигурации, понятием синодического и сидерического периодов обращения и их взаимосвязи, формулы, выражающие связь между сидерическими и синодическими периодами обращения и вращения планет;
Уметь: 1-й уровень (стандарт) - определять вид конфигурации и производить простейшие вычисления периодов обращения, использовать Астрономические календари, справочники и подвижную карту звездного неба для определения условий наступления и протекания данных небесных явлений. 2-й уровень - определять вид конфигурации, использовать Астрономические календари, справочники и подвижную карту звездного неба для определения условий наступления и протекания данных небесных явлений, решать задачи, связанные с расчетом положения и условий видимости планет с учетом формул, выражающих связь сидерических и синодических периодов их обращения и вращения.

Оборудование: Таблица “Солнечная система”, слайд-фильм “Строение Солнечной системы”, диапозитивы: петлеобразное движение планеты, конфигурация и фазы внутренних планет, модель планетной системы, д/ф “Видимое движение небесных тел”, к/ф “Планетная система”, “Петля Марса”. Таблица - “Состав Солнечной системы”. ПКЗН. CD- "Red Shift 5.1" (Экскурсии -2. Солнце, Земля и Луна - Зигзаги планет; принцип нахождение небесного объекта в заданный момент времени, Лекции - Блуждающие планеты).

Межпредметная связь: математика (развитие вычислительных навыков и геометрических представлений), первоначальное представление учащиеся о строении Солнечной системы, полученных в курсах природоведения и истории.

Ход урока:

1.Повторение материала (8-10мин)

А) Вопросы:

  • Сообщение о календаре.
  • Решение задачи №4 (стр. 29).
  • Решение задачи №5 (стр. 29).
  • Решение задачи №7 (стр. 29).
  • Связь времени с долготой. Всемирное и другие виды времени.

Б) Остальные: 1. Кроссворд

2. Укажите причины небесных явлений , отмечая напротив каждого варианта вопроса верный номер варианта ответа, например: А1; Б2; В3 и т.д.

3. Работа по вопросам .

  1. Азимут светила 45°, а высота 60°. В какой стороне неба светило? [на западе]
  2. Определите созвездие в котором находится звезда α=4 ч 14 м, δ=16°28". [α- Тельца - Алдебаран]
  3. Когда в течение суток зенитное расстояние Солнца равно 90 о? [ восход, заход]
  4. Сколько суток содержал в 1918г в РФ в связи с реформой, календарь?
  5. Планета видна на расстоянии 120 о от Солнца. Верхняя или нижняя эта планета? [верхнее]
  6. 20 марта 1997г было противостояние Марса. В каком созвездии находился Марс? [Рыбы - точка γ]
  7. Сохранится ли видимая с Земли конфигурация созвездий, если астронавт будет наблюдать звездное небо с Марса? [да]


2. Новый материал (15мин)
1. Состав Солнечной системы:

  1. Планеты- На сегодня известно 8 больших планет со спутниками и кольцами: Меркурий, Венера, Земля (с Луной), Марс (с Фобосом и Деймос), Юпитер (с кольцом и не менее 63 спутников), Сатурн (с мощным кольцом и не менее 60 спутников) - эти планеты видны невооруженным глазом; Уран (открыт в 1781г, с кольцом и не менее 27 спутника), Нептун (открыт в 1846г, с кольцом и не менее 13 спутников).
  2. Карликовые планеты - Плутон (открыт в 1930г, с Хароном и еще 2 спутниками = был планетой до 24.08.2006 года), Церера (первый астероид открыт в 1801г), и объекты пояса Койпера: Зена (Xena, объект 2003UB313 - официальное название 136199 Eris (Эрис)) и Седна (объект 90377), находящиеся за орбитой Плутона и открытые в 2003 году.
  3. Малые планеты - астероиды = (первый Церера открыт в 1801г - переведен в разряд карликовых планет с 24.08.2006г), расположены в основном в 4-х поясах: Главном - между орбитами Марса и Юпитера, поясе Койпера - за орбитой Нептуна, троянцы: на орбите Юпитера и Нептуна. Размеры менее 800 км. Сейчас известно почти 400 000.
  4. Кометы - небольшие тела до 100 км в диаметре, конгломерат пыли и льда, движущиеся по очень вытянутым орбитам. Облако Оорта (резервуар комет) находится на периферии Солнечной системы.
  5. Метеорные тела - небольшие тела от песчинок до камней в несколько метров диаметром (образуются от комет и дробления астероидов). Небольшие при входе в земную атмосферу сгорают, а те, которые достигают Земли - метеориты.
  6. Межпланетная пыль - от комет и дробления астероидов. Мелкая выталкивается на периферию Солнечной системы солнечным давлением, а более крупные притягиваются планетами и Солнцем.
  7. Межпланетный газ - от Солнца и планет, очень разряжен. В нем распространяется “солнечный ветер” - поток плазмы (ионизированного газа от Солнца).
  8. Электромагнитное излучение и гравитационные поля - Солнечная система пронизана магнитными полями Солнца и планет, гравитационными полями и электромагнитными волнами различной длины волн, порождаемые планетами и Солнцем.

2. Петлеобразное движение планет

Более чем за 2000 лет до НЭ люди заметили, что некоторые звезды перемещаются по небу - их позже греки назвали “блуждающими” - планетами . К ним относили Луну и Солнце. Нынешнее название планет заимствовано у древних римлян. Выяснилось, что планеты блуждают в зодиакальных созвездиях. Но объяснить смог только Н.Коперник в начале 16в видимым отображением на небесной сфере в силу движения Земли и планет с разными скоростями вокруг Солнца.
Траектория движения небесного тела называется его орбитой . Скорости движения планет по орбитам убывают с удалением планет от Солнца. Плоскости орбит всех планет Солнечной системы лежат вблизи плоскости эклиптики, отклоняясь от нее: Меркурий на 7 о , Венера на 3,5 о ; у других наклон еще меньше.
По отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Юпитер, Сатурн, Уран, Нептун). Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне.

3. Конфигурация планет.

Конфигурация - характерное взаимное расположение планет относительно Солнца и Земли.
Нижние - соединение (верхнее и нижнее - планета находится на прямой Солнце-Земля) и элонгация (западная и восточная - наибольшее угловое удаление планеты от Солнца: Меркурия-28 о , Венеры-48 о - лучшее время наблюдения планет).
В нижнем соединении Венера и Меркурий периодически проходят по диску Солнца :
Меркурий в мае и ноябре 13 раз в 100 лет. Последние прошли 7.05.2003г и 8.11.2006г, а будут 9.05.2016г и 11.11.2019г.
Венера в июне и декабре повторяются через 8 и 105,5, или 8 и 121,5 лет, последнее было 8.06.2004г а будет 6.06.2012г.

Верхние - квадратура (западная и восточная - четверть круга) и соединение (противостояние - когда планета за Землей от Солнца - лучшее время наблюдения внешних планет, она полностью освещена Солнцем).

4. Периоды обращения планет.
В ходе разработки гелиоцентрической системы строения мира Н.Коперник получил формулы (уравнения синодического периода ) для расчета периодов обращения планет и впервые их вычислил.
Сидерический (T - звездный) - промежуток времени в течение которого планета совершает полный оборот вокруг Солнца по своей орбите относительно звезд .
Синодический (S ) - промежуток времени между двумя последовательными одинаковыми конфигурациями планеты .

Нижние (внутренние) планеты движутся по орбите быстрее Земли, а верхние (внешние) медленнее.
Если планета совершает полный оборот за период Т , то в сутки она сместится по орбите на 360 о /Т , а Земля на 360 о /Т з .
Тогда для нижней планеты разность средних смещений есть наблюдаемое суточное смещение 360 о /S=360 о /Т - 360 о /Т з или 1/S=1/Т - 1/Т з (фор.12) , а для верхней 1/S=1/Т з - 1/Т (фор.13)

внутренней внешней


Астрономическая рефракция
- явление преломления (искривления) световых лучей при прохождении через атмосферу, вызванное оптической неоднородностью атмосферного воздуха. Вследствие уменьшения плотности атмосферы с высотой искривленный луч света обращен выпуклостью в сторону зенита. Рефракция изменяет зенитное расстояние (высоту) светил по закону: r = a * tg z , где: z - зенитное расстояние, a = 60,25" - постоянная рефракции для земной атмосферы (при t = 0 о С, p = 760 мм. рт. ст.).
В зените рефракция минимальна - она возрастает по мере наклона к горизонту до 35" и сильно зависит от физических характеристик атмосферы: состава, плотности, давления, температуры. Вследствие рефракции истинная высота небесных светил всегда меньше их видимой высоты: рефракция "поднимает" изображения светил над их истинными положениями. Искажаются форма и угловые размеры светил: на восходе и закате близ горизонта "сплющиваются" диски Солнца и Луны, поскольку нижний край диска поднимается рефракцией сильнее верхнего.
Искажается показатель преломления света в зависимости от длины волны: при очень чистой атмосфере человек может увидеть на заходе или восходе Солнца редкий "зеленый луч". Поскольку расстояния до звезд несравнимо превосходят их размеры, можно считать звезды точечными источниками света, лучи которых распространяются в пространстве по параллельным прямым. Преломление лучей звездного света в атмосферных слоях (потоках) разной плотности вызывает мерцание звезд - неравномерные усиления и ослабления их блеска, сопровождающиеся изменениями их цвета ("игрой звезд").
Земная атмосфера рассеивает солнечный свет на случайных микроскопических неоднородностях плотности воздуха, сгущениях и разрежениях размерами 10 -3 -10 -9 м. Интенсивность рассеяния света обратно пропорциональна четвертой степени длины световой волны (закон Рэлея). Сильнее всего рассеиваются короткие волны: фиолетовые, синие и голубые лучи, слабее всего - оранжевые и красные. Вследствие этого земное небо имеет днем голубой цвет. Ночью на Земле никогда не бывает абсолютно темно: рассеянный в атмосфере свет звезд и давно зашедшего Солнца создает ничтожно малую освещенность в 0,0003 лк.
Продолжительность светового времени суток - дня всегда превышает промежуток времени от восхода до захода Солнца. Рассеяние солнечных лучей в земной атмосфере порождает сумерки , плавный переход от светлого времени суток - дня к темному - ночи, и обратно. Сумерки возникают из-за подсвечивания верхних слоев атмосферы Солнцем, находящимся ниже линии горизонта. Продолжительность их определяется положением Солнца на эклиптике и географической широтой места.
Различают гражданские сумерки: период времени от захода Солнца (верхнего края солнечного диска) до его погружения на 6 о -7 о под горизонт;
навигационные сумерки - до момента погружения Солнца под горизонт на 12 о;
астрономические сумерки - пока угол не составит 18 о .
На высоких (± 59,5 о ) широтах Земли наблюдаются белые ночи - явление прямого перехода вечерних сумерек в утренние при отсутствии темного времени суток. Обобщено в таблице.
Космические явления Небесные явления, возникающие вследствие данных космических явлений
Атмосферные явления 1) Атмосферная рефракция:
- искажение небесных координат светил;
- необходимость поправки экваториальных координат небесных светил на рефракцию;
- искажение формы и угловых размеров небесных светил по высоте на восходе и закате;
- мерцание звезд;
- "зеленый луч".
2) Рассеяние света в атмосфере Земли:
- голубой цвет дневного неба;
- синий, сиреневый цвет вечернего (утреннего) неба;
- сумерки.
- продолжительность светового времени суток (дня) всегда превышает промежуток времени от восхода до захода Солнца;
- белые ночи; полярный день и полярная ночь на высоких широтах;
- свечение ночного неба;
- заря; красный цвет зари;
- покраснение дисков Солнца и Луны на восходе и закате.

III. Закрепление материала 8 мин)

  1. Просмотреть пример №3 (стр. 34).
  2. Марс в противостоянии виден в созвездии Весов. В каком созвездии находится в это время Солнце? (Овен)
  3. В каком созвездии находится Меркурий (Венера), если планета сейчас в верхнем (нижнем) соединении с Солнцем? (по ПКЗН в зодиакальных созвездиях нахождения Солнца)
  4. 21 июля 2001 года Меркурий в наибольшей западной элонгации. В каком созвездии в какое время суток и сколько времени можно наблюдать эту планету? (В западной элонгации планета наблюдается вечером, по ПКЗН Близнецы-Телец, 28 о /15 о =1час 52 мин).
  5. Каковы условия видимости Земли с поверхности Луны? Орбиты спутника Венеры? С поверхности Марса? (Обратить внимание на положение Солнца, мешающего видимости)
  6. CD- "Red Shift 5.1":
    = показывается (при необходимости) принцип нахождения объекта в заданное время и пример для Марса нахождения предыдущего и следующего противостояния. (26.10.2006г и 5.12.2008г)
    = в каких созвездиях, какова фаза, звездная величина, элонгация и угловой диаметр планет, Солнца, Луны (находим лучше всего в астрономическом календаре)
    = какие планеты в октябре находятся в соединении с Солнцем (для 2007г это Меркурий в нижнем)
  7. Какова продолжительность года на Марсе, если между двумя противостояниями проходит 780 d ? (1/S=1/Т з - 1/Т , отсюда Т= (Т з. S)/(S- Т з)= (365,25 . 780)/(780-365,25)=686,9 d)
  8. Наиболее удобно наблюдать Меркурий вблизи его элонгаций. Почему? Как часто они повторяются, если год на Меркурии равен 88 d ? (не так мешает свет Солнца, 1/S=1/Т - 1/Т з , отсюда S=(88 . 365,25)/(365,25-88)=115,9 d)
  9. Противостояние Юпитера наблюдалось 30 апреля 1994г в 13,9 ч. Когда будет следующее противостояние? Будет ли оно видно?

Решение: По формуле 13 получим S =1,092года=1,092 . 365,25=1 год + 34 дня. Добавляем к данной дате и получим противостояние 2 июня 1995г. По ПКЗН находим - созвездии Змееносца между 16 и 17 час, то есть в дневное время - не видимо.

Итог:
1) Что такое конфигурация? Ее виды. 2) Что такое сидерический и синодический период? 3) Состав Солнечной системы. 4) Почему на звездных картах не указывают положения планет? 5) В каких созвездиях надо искать на небе планеты? 6) Какие планеты могут наблюдаться на фоне диска Солнца? 7) Сдать контрольную работу, кроссворд, сообщение, опросник (то что делали - что задавалось) по первой главе "Введение в астрономию". 8) Оценки

Домашнее задание: §7; вопросы и задания стр. 35.
Задания из сборника олимпиадных задач В.Г. Сурдина:
4.10. На Земле солнечные сутки длиннее звездных, а на Венере - наоборот. Почему? (для решения нужно помнить, что Земля вращается вокруг своей оси в противоположном направлении от направления, в котором она обращается вокруг Солнца. Венера - единственная из планет Солнечной системы, вращающаяся в том же направлении, в котором она обращается вокруг Солнца. Солнце на Венере опускается за горизонт раньше звезд, одновременно с которыми оно взошло).
4.13. Считается, что у Венеры бывает либо утренняя, либо вечерняя видимость. А можно ли наблюдать Венеру в течение одних суток и утром и вечером? (Ответ: "да". Явление "двойной видимости" Венеры наблюдается в случае большого различия между склонениями Солнца и Венеры. В этом случае в средних и северных широтах Венера всходит чуть раньше Солнца, а заходит чуть позже Солнца).

последнее изменение 14.10.2009 года

250 кб
Внешние планеты: Марс, Юпитер, Сатурн, ... 136,9 кб
Видимое движение верхних планет 136,5 кб
Видимое движение планет (1) 128,9 кб
Видимое движение планет (2) 131,2 кб
Видимость планет в мае 2002 года 135,3 кб
Синодический и сидерический периоды Луны 150,8 кб
«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".

− прямоугольные координаты точки Р

− сферические координаты точки Р


Горизонтальная система координат

  • При построении любой системы небесных координат на небесной сфере выбирается большой круг (основной круг системы координат) и две диаметрально противоположные точки на оси, перпендикулярной к плоскости этого круга (полюса системы координат).

  • В качестве основного круга горизонтальной системы координат принимают истинный горизонт, полюсами служат зенит (Z) и надир (Z 1), через которые проводятся большие полукруги, называемые кругами высоты или вертикалами.

Небесное светило

Истинный горизонт

Вертикал


  • Мгновенное положение светила M относительно горизонта и небесного меридиана определяется двумя координатами: высотой (h) и азимутом (A), которые называются горизонтальными.

Зенитное расстояние

0 ° ≤ h ≤ 90°

0 ° ≤ A ≤ 360°


  • Южная половина небесного меридиана (ZSZ 1) есть начальный вертикал, а круги высоты ZEZ 1 и ZWZ 1 , проходящие через точки востока E и запада W, называются первым вертикалом.
  • Малые круги (ab, cd), параллельные плоскости истинного горизонта, называются кругами равной высоты или альмукантаратами.

  • В течение суток азимут и высота светил непрерывно меняются.
  • Поэтому горизонтальная система координат непригодна для составления звездных карт и каталогов.
  • Для этой цели нужна система, в которой вращение небесной сферы не влияет на значения координат светил.

Экваториальная система координат

  • Для неизменности сферических координат нужно, чтобы координатная сетка вращалась вместе с небесной сферой.
  • Этому условию удовлетворяет экваториальная система координат.

  • Основная плоскость в этой системе – небесный экватор, а полюса – северный и южный полюсы мира.

Северный полюс мира

Небесный экватор

Южный полюс мира


  • Через полюса проводятся большие полукруги, называемые кругами склонения, а параллельно плоскости экватора – небесные параллели.

Небесная параллель

Круг склонения


  • Положение светила в экваториальной системе координат отсчитывается по кругу склонения (склонение) и по небесному экватору (прямое восхождение). Точкой отсчета координаты служит точка весеннего равноденствия.

Эклиптика

Северный полюс

эклиптики

Наклонение

эклиптики

Небесный

Южный полюс

эклиптики

Точка весеннего

равноденствия


  • Круг склонения, проходящий через точку весеннего равноденствия называется равноденственным колюром. Прямое восхождение есть угол при полюсе мира между равноденственным колюром и кругом склонения, проходящим через светило. Склонение – это угловое расстояние светила от небесного экватора.

Круг склонения

Равноденственный

Склонение

Небесный

Прямое восхождение

Точка весеннего

равноденствия



  • Точка весеннего равноденствия находится в созвездии Рыбы, и она служит начальной точкой, от которой в направлении против часовой стрелки отсчитывается координата прямое восхождение, которую обычно обозначают буквой α . Эта координата является аналогом долготы в географических координатах.
  • В астрономии принято прямое восхождение измерять в часовой мере, а не в градусной. При этом исходят из того, что полная окружность составляет 24 ч.
  • Вторая координата светила δ склонение – является аналогом широты, ее измеряют в градусной мере. Так, звезда Альтаир (α Орла) имеет координаты α = 19ч48м18с, склонение δ = +8°44".
  • Измеренные координаты звезд хранят в каталогах, по ним строят звездные карты, которые используют астрономы при поиске нужных светил.

  • Темной ночью мы можем увидеть на небе около 2500 звезд (с учетом невидимого полушария 5000), которые отличаются по блеску и цвету. Кажется, что они прикреплены к небесной сфере и вместе с ней обращаются вокруг Земли. Чтобы ориентироваться среди них, небо разбили на 88 созвездий.
  • Во II в. до н. э. Гиппарх разделил звезды по блеску на звездные величины, самые яркие он отнес к звездам первой величины (1 m ), а самые слабые, едва видимые невооруженным глазом, - к 6 m .
  • В созвездии звезды обозначаются греческими буквами, некоторые самые яркие звезды имеют собственные названия. Так, Полярная звезда - Малой Медведицы имеет блеск 2 m . Самая яркая звезда северного неба Вега - Лиры имеет блеск около 0 m .

  • В настоящее время для ориентации среди звезд астрономы используют различные системы небесных координат. Одна из них – экваториальная система координат (рис. 1). В ее основе лежит небесный экватор – проекция земного экватора на небесную сферу.
  • Эклиптика и экватор пересекаются в двух точках: весеннего (γ ) и осеннего () равноденствия.

Видимое движение планет

  • В древности были известны 5 похожих на звезды, но более ярких светил, которые хотя и участвуют в суточном вращении небосвода, но совершают и самостоятельные видимые движения. Древние греки назвали такие светила планетами (по-гречески «планета» означает «блуждающая»).
  • Невооруженным глазом можно увидеть 5 блуждающих светил (планет) - Меркурий, Венеру, Марс, Юпитер и Сатурн.

  • Планеты всегда располагаются на небе недалеко от эклиптики, но в отличие от Солнца и Луны через определенные временные интервалы меняют направление своего движения.
  • Они перемещаются между звездами в основном с запада на восток (как Солнце и Луна) - прямое движение.
  • Однако каждая планета в определенное время замедляет свое движение, останавливается и начинает двигаться с востока на запад - попятное движение.
  • Затем светило опять останавливается и возобновляет прямое движение. Поэтому видимый путь каждой планеты на небосводе - сложная линия с зигзагами и петлями.

  • В XVI в. польский ученый Николай Коперник, отбросив догматическое представление о неподвижности Земли, поставил ее в число рядовых планет.
  • Коперник указал, что Земля, занимая третье место от Солнца, так же, как и другие планеты, движется в пространстве вокруг Солнца и одновременно вращается вокруг своей оси. Гелиоцентрическая система Коперника очень просто объясняла петлеобразное движение планет.
  • На рисунке показано движение Марса на небесной сфере, наблюдаемое с Земли. Одинаковыми цифрами отмечены положения Марса, Земли и точек траектории Марса на небосводе в одни и те же моменты времени.


  • Меркурий и Венера всегда находятся вблизи Солнца, удаляясь от него попеременно к западу и к востоку. Благодаря близости к Солнцу эти две планеты видны только в восточной области неба под утро, до восхода Солнца, либо в западной стороне по вечерам, вскоре после захода Солнца.
  • Таким образом, видимое движение Меркурия и Венеры значительно отличается от видимого пути Марса, Юпитера и Сатурна.
  • Перемещение же Солнца и Луны на фоне звезд происходит по большим кругам всегда в прямом направлении.

  • Петлеобразные участки видимого пути планет могут располагаться в разных зодиакальных созвездиях, но в их расположении имеется существенное различии.
  • Весь пояс зодиакальных созвездий Марса обходит за 687 суток, Юпитер – почти за 12 лет, а Сатурн – за 29,5 года. Эти три планеты периодически бывают вблизи Солнца и тогда не видны, затем постепенно отходят от него к западу и описывают петлю в области неба, противоположной Солнцу.
  • Эти планеты бывают видны в различные часы темного времени суток. Аналогично движутся Уран, Нептун и Плутон.





  • Планеты, орбиты которых расположены в н у т р и земной орбиты, называются н и ж н и м и , а планеты, орбиты которых расположены в н е земной орбиты, - в е р х н и м и . Характерные взаимные расположения планет относительно Солнца и Земли называются к о н ф и г у р а ц и я м и планет .
  • Конфигурации нижних и верхних планет различны. У нижних планет это

с о е д и н е н и я (верхнее и нижнее ) и э л о н г а ц и и (восточная и западная ; это наибольшие угловые удаления планеты от Солнца).

  • У верхних планет - к в а д р а т у р ы (восточная и западная: слово «квадратура» означает «четверть круга»), с о е д и н е н и е и п р о т и в о с т о я н и е .
  • Видимое движение нижних планет напоминает колебательное движение около Солнца. Нижние планеты лучше всего наблюдать вблизи элонгации (наибольшая элонгация Меркурия - 28°, а Венеры - 48°). С Земли в это время видно не все освещенное Солнцем полушарие планеты, а лишь часть его (ф а з а планеты). При восточной элонгации планета видна на западе вскоре после захода Солнца, при западной - на востоке незадолго перед восходом Солнца.
  • Верхние планеты лучше всего видны вблизи противостояний, когда к Земле обращено все освещенное Солнцем полушарие планеты.


  • В астрономии среднее расстояние от Земли до Солнца принято за единицу расстояния и называется астрономической единицей (а. е.), 1 а. е. = 1,5 10 8 км.
  • Так, Меркурий находится от Земли на расстоянии 0,39 а. е., а Сатурн – на расстоянии 9,54 а. е.
  • Выражение «путь Солнца среди звёзд» кому-то покажется странным. Ведь днём звёзд не видно. Поэтому нелегко заметить, что Солнце медленно, примерно на 1° за сутки, перемещается среди звёзд справа налево. Зато можно проследить, как в течение года меняется вид звёздного неба. Всё это - следствия обращения Земли вокруг Солнца. Путь видимого годичного перемещения Солнца на фоне звёзд именуется эклиптикой (от греч. «эклипсис» - «затмение»), а период оборота по эклиптике - звёздным годом. Он равен 365 суткам 6 ч 9 мин 10с, или Зб5,25б4 средних солнечных суток. Эклиптика и небесный экватор пересекаются под углом 23°26′ в точках весеннего и осеннего равноденствия. В первой из этих точек Солнце обычно бывает 21 марта, когда оно переходит из южного полушария неба в северное. Во второй - 23 сентября, при переходе из северного полушария в южное. В наиболее удалённой к северу точке эклиптики Солнце бывает 22 июня (летнее солнцестояние), а к югу - 22 декабря (зимнее солнцестояние). В високосный год эти даты сдвинуты на один день. Из четырёх точек эклиптики главной является точка весеннего равноденствия. Именно от неё отсчитывается одна из небесных координат - прямое восхождение. Она же служит для отсчёта звёздного времени и тропического года - промежутка времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия. Тропический год определяет смену времён года на нашей планете.

Неравномерное движение Солнца среди звёзд

  • Около 2 тыс. лет назад, когда Гиппарх составил свой звёздный каталог (первый дошедший до нас целиком), точка весеннего равноденствия находилась в созвездии Овна.
  • К нашему времени она переместилась почти на 30°, в созвездие Рыб, а точка осеннего равноденствия - из созвездия Весов в созвездие Девы. Но по традиции точки равноденствий обозначаются знаками прежних «равноденственных» созвездий - Овна ‘Y’ и Весов Ὠ .
  • То же случилось и с точками солнцестояний: летнее в созвездии Тельца отмечается знаком Рака ®, а зимнее в созвездии Стрельца - знаком Козерога ^.

  • Половину эклиптики от весеннего равноденствия до осеннего (с 21 марта по 23 сентября) Солнце проходит за 186 суток. Вторую половину, от осеннего равноденствия до весеннего, - за 179-180 суток.
  • Но половинки эклиптики равны: каждая 180°. Следовательно, Солнце движется по эклиптике неравномерно. Эта неравномерность отражает изменения скорости движения Земли по эллиптической орбите вокруг Солнца.
  • Неравномерность движения Солнца по эклиптике приводит к разной длительности времён года.
  • Для жителей Северного полушария весна и лето на шесть суток продолжительнее осени и зимы. Земля 2-4 июля расположена от Солнца на 5 млн километров дальше, чем 2-3 января, и движется по своей орбите медленнее в соответствии со вторым законом Кеплера.
  • Летом Земля получает от Солнца меньше тепла, но зато лето в Северном полушарии продолжительнее зимы. Поэтому в Северном полушарии Земли теплее, чем в Южном.

С самых древних времен человечество интересовали видимые движения небесных тел: Солнца, Луны и звезд. Трудно представить себе Наша собственная Солнечная система кажется слишком большой, протянувшись более чем на 4 триллиона миль от Солнца. А между тем Солнце - это всего лишь одна сотая миллиарда от других звезд, которые составляют галактику Млечный Путь.

Млечный Путь

Сама галактика представляет собой громаднейшее колесо, которое вращается, из газа, пыли и более 200 миллиардов звезд. Между ними простираются триллионы миль пустого пространства. Солнце закрепилось на окраине галактики, по форме напоминающей спираль: сверху Млечный Путь смотрится как огромный вращающийся ураган из звезд. По сравнению с размерами галактики, Солнечная система чрезвычайно мала. Если представить, что Млечный Путь величиной с Европу, то Солнечная система будет не больше по размерам, чем грецкий орех.

Солнечная система

Солнце и его 9 планет - спутников разбросаны в одном направлении от центра галактики. Как планеты совершают обороты вокруг своих звезд, так же и звезды обращаются вокруг галактик.

Солнцу понадобится около 200 миллионов лет при скорости 588000 миль в час для того, чтобы сделать полный оборот вокруг этой галактической карусели. Ничем особенным наше Солнце не отличается от других звезд, кроме того, что у него есть спутник, планета под названием Земля, населенная жизнью. Вокруг Солнца по своим орбитам вращаются планеты и небесные тела поменьше, которые называются астероидами.

Первые наблюдения светил

Человек наблюдает видимые движения небесных тел и космические явления уже как минимум 10000 лет. Впервые записи в летописях о небесных телах появились в древнем Египте и Шумере. Египтяне умели различать на небе три типа тел: звезды, планеты и "звезды с хвостами". Тогда же были обнаружены небесные тела: Сатурн, Юпитер, Марс, Венера, Меркурий и, конечно, Солнце, и Луна. Видимые движения небесных тел - это созерцаемое с Земли передвижение этих объектов относительно системы координат, независимо от суточного вращения. Настоящее движение - движение их в космическом пространстве, определяемое действующими на эти тела силами.

Видимые галактики

Глядя в ночное небо, можно увидеть нашу ближайшую соседку - - в виде спирали. Млечный путь, несмотря на его размеры, всего лишь одна из 100 миллиардов галактик в космосе. Без использования телескопа можно увидеть три галактики и часть нашей. Две из них имеют названия Большое и Малое Магелланово облако. Впервые они были увидены в южных водах в 1519 году экспедицией португальского исследователя Магеллана. Эти небольшие галактики совершают обороты вокруг Млечного пути, поэтому являются нашими самыми близкими космическими соседями.

Третья видимая с Земли галактика, Андромеда, отдалена от нас примерно 2 миллионами световых лет. Это значит, что звездный свет Андромеды проходит миллионы лет, чтобы приблизиться к нашей Земле. Таким образом, мы созерцаем эту галактику такой, какой она была 2 миллиона лет назад.

Помимо этих трех галактик ночью можно увидеть часть Млечного пути, представленного множеством звезд. По мнению древних греков, эта группа звезд - молоко из груди богини Геры, отсюда и происходит название.

Видимые планеты с Земли

Планеты - это небесные тела, обращающиеся вокруг Солнца. Когда мы наблюдаем Венеру, светящуюся в небе, то это происходит от того, что она освещается Солнцем и отбивает часть солнечного света. Венера - это Вечерняя звезда или Утренняя звезда. Люди называют ее по-разному, потому что вечером и утром она находится в разных местах.

Как планета Венера вращается вокруг Солнца и меняет свое местонахождение. На протяжении суток происходит видимое движение небесных тел. Система небесных координат не только помогает разобраться в местоположении светил, но и позволяет составлять звездные карты, ориентироваться в ночном небе по созвездиям и изучать поведение небесных объектов.

Законы движения планет

Соединяя воедино наблюдения и теории о движении небесных тел, люди вывели закономерности нашей галактики. Открытия ученых помогли расшифровать видимые движения небесных тел. открытые были одними из первых астрономических законов.

Немецкий математик и астроном стал первооткрывателем данной темы. Кеплер, изучив работы Коперника, вычислил для орбит самую лучшую форму, разъясняющую видимые движения небесных тел - эллипс, и довел закономерности передвижения планет, известные в научном мире как законы Кеплера. Два из них характеризуют передвижение планеты по орбите. Они гласят:

    Любая планета вращается по эллипсу. В одном из фокусов его присутствует Солнце.

    Каждая из них передвигается в плоскости, проходящей сквозь середину Солнца, при этом за одинаковые периоды радиус-вектор между Солнцем и планетой, очерчивает равновеликие площади.

Третий закон соединяет орбитальные данные планет в пределах системы.

Нижние и верхние планеты

Изучая видимые движения небесных тел, физика подразделяет их на две группы: нижние, куда относятся Венера, Меркурий, и верхние - Сатурн, Марс, Юпитер, Нептун, Уран и Плутон. Передвижение этих небесных тел в сфере совершается по-разному. В процессе наблюдаемого перемещения нижних планет у них отмечается смена фаз как у Луны. При перемещении верхних планет можно заметить, что смена фаз у них не происходит, они постоянно обращены к людям своей светлой стороной.

Земля, наравне с Меркурием, Венерой и Марсом, принадлежит к группе так называемых внутренних планет. Они совершают обороты вокруг Солнца внутренними орбитами, в отличие от больших планет, которые вращаются внешними орбитами. Например, Меркурий, который в 20 раз меньше по крайней внутренней орбите.

Кометы и метеориты

Вокруг Солнца вертятся, кроме планет, еще миллиарды ледяных глыб, состоящие из замерзшего твердого газа, мелкого камня и пыли, - кометы, которыми заполнена Солнечная система. Видимые движения небесных тел, представленные кометами, можно увидеть только тогда, когда они приближаются к Солнцу. Тогда их хвост начинает гореть и светится в небе.

Самая знаменитая из них - комета Галлея. Каждые 76 лет она сходит со своей орбиты и приближается к Солнцу. В это время ее можно наблюдать с Земли. Еще в ночном небе можно созерцать метеориты в виде летящих звезд - это сгустки материи, которые движутся по Вселенной с огромной скоростью. Когда они попадают в поле притяжения Земли, почти всегда сгорают. Из-за чрезвычайной скорости и трения с воздушной оболочкой Земли метеориты раскаляются и распадаются на мелкие частицы. Процесс их сгорания можно наблюдать в ночном небе в виде светящейся ленты.

Учебная программа по астрономии описывает видимые движения небесных тел. 11 класс уже ознакомлен с закономерностями, по которым происходит сложное движение планет, сменой лунных фаз и законами затмений.

Общее представление о строении Солнечной системы вы получили еще в курсе природоведения. Теперь вам предстоит более глубоко изучить строение Солнечной системы, и начнем с описания и анализа наблюдаемого движения планет. Невооруженным глазом можно увидеть пять планет - Меркурий, Венеру, Марс. Юпитер и Сатурн, Планету по внешнему виду нелегко отличить от звезды, тем более что не всегда она бывает значительно ярче ее. Планеты относятся к числу тех светил, которые не только участвуют в суточном вращении небесной сферы, но еще и смещаются (иногда незаметно) на фоне зодиакальных созвездий. С этой особенностью планет связано само слово «планета», которым древние греки называли «блуждающие* светила. Чем лучше вы будете знать звездное небо, тем скорее обнаружите на нем планеты как «лишние» светила в созвездиях. В 8-кратный бинокль (а лучше телескоп!) можно заметить, что Венера, Юпитер, Сатурн имеют диски, в отличие от звезд, которые в оптические инструменты видны как точечные объекты.
Если проследить за перемещением какой-нибудь планеты, например Марса, ежемесячно отмечая его положение на звездной карте, то может выявиться главная особенность видимого движения планеты: планета описывает на фоне звездного неба петлю (рис. 1).
Петлеобразное движение планет долгое время оставалось загадочным и, как вы скоро узнаете, нашло простое объяснение в учении Коперника.

Рис. 1. Видимое движение планеты. Такую петлю описал на фоне звездного неба Марс с ноября 1979 г. по июль 1980 г. (римские цифры означают первые числа месяца).


2. Конфигурации планет

Планеты, орбиты которых расположены в н у т р и земной орбиты, называются н и ж н и м и , а планеты, орбиты которых расположены
в н е земной орбиты, - в е р х н и м и . Характерные взаимные расположения планет относительно Солнца и Земли называются
к о н ф и г у р а ц и я м и планет
. Конфигурации нижних и верхних планет различны (рис. 2 и рис 3). У нижних планет это с о е д и н е н и я (верхнее и нижнее ) и э л о н г а ц и и (восточная и западная ; это наибольшие угловые удаления планеты от Солнца). У верхних планет - к в а д р а т у р ы (восточная и западная: слово «квадратура» означает «четверть круга»), с о е д и н е н и е и п р о т и в о с т о я н и е .
Видимое движение нижних планет напоминает колебательное движение около Солнца. Нижние планеты лучше всего наблюдать вблизи элонгации (наибольшая элонгация Меркурия - 28°, а Венеры - 48
° ). С Земли в это время видно не все освещенное Солнцем полушарие планеты, а лишь часть его (ф а з а планеты). При восточной элонгации планета видна на западе вскоре после захода Солнца, при западной - на востоке незадолго перед восходом Солнца.
Верхние планеты лучше всего видны вблизи противостояний, когда к Земле обращено все освещенное Солнцем полушарие планеты.

.