Контактный способ производства серной кислоты. Технологическая схема производства серной кислоты контактным способом по методу «ДК - ДА Схема производства серной кислоты контактным способом

Контактной серной кис­лоты отражает технологическая схема, в которой исход­ным сырьем служит колчедан (классическая схема) (рис. 34). Эта схема включает четыре основные стадии: 1) получение сернистого ангидрида, 2) очистка газа, со­держащего сернистый ангидрид, от примесей, 3) окисле­ние (на катализаторе) сернистого ангидрида до серного, 4) абсорбция серного ангидрида.

К аппаратам первой стадии процесса относится обжи­говая печь 2, в которой получают сернистый газ, и сухой электрофильтр 5, в котором обжиговый газ очищается от пыли. На вторую стадию процесса - очистку обжиго­вого газа от примесей, ядовитых по отношению к катали­затору, газ поступает при 300-400° С. Газ очищают, промывая его более холодной, чем сам газ, серной кис­лотой. Для этого последовательно газ пропускают через такие аппараты: промывные башни 6 и 7, первый мокрый электрофильтр 8, увлажнительную башню 9 и второй мокрый электрофильтр 8. В этих аппаратах газ очищает­ся от мышьяковистого, серного и селенистого ангидридов, а также от остатков пыли. Далее газ освобождается от влаги в сушильной башне 10 и брызг серной кислоты в

Брызгоуловнтеле 11. Обе промывные 6 п 7, увлажнитель­ная 9 и сушильная 10 башни орошаются циркулирующей серной кислотой. В цикле орошения есть сборники 20, из которых серная кислота насосами подается па орошение башен. При этом кислота предварительно охлаждается в холодильниках 18, где из промывных башен отводится в основном физическое тепло обжигового газа, а пз су­шильной- тепло разбавления сушильной серной кисло­ты водой.

Нагнетатель 12 в этой схеме помещен примерно в се­редине системы; все аппараты, расположенные перед ним, находятся под разрежением, после него - пел давлени­ем. Таким образом, под давлением работают аппараты, обеспечивающие окисление сернистого ангидрида до сер­ного и абсорбцию серного ангидрнда.

При окислении сернистого ангидрнда до ссрниго вы­деляется большое количество тепла, которое используют для нагревания очищенного обжигового газа, поступаю­щего в контактный аппарат 14. Горячий серный ангидрид через стенки труб, по которым он проходит в теплооб­меннике 13, передает тепло более холодному сернистому ангидриду, проходящему в межтрубном пространстве теплообменника 13 и поступающему в контактный аппа­рат 14. Дальнейшее охлаждение серного ангидрнда перед абсорбцией в олеумном 16 и моногидратпом 17 абсорберах происходит в ангидридном холодильнике (экономайзере) 15.

При поглощении серного ангидрида в абсорбционном отделении выделяется большое количество гепла, кото­рое передается циркулирующей кислоте, орошающей олеумный 16 и моногидратный 17 абсорберы, и отводит­ся в холодильниках 19 и 18.

Концентрация олеума и моногидрата повышается вследствие поглощения все новых и новых порции серно­го ангидрида. Сушильная же кислота все время разбав­ляется из-за поглощения паров воды пз обжгиового газа Поэтому для поддержания стабильных концентраций этих кислот существуют циклы разбавления олсумсі моно­гидратом, моногидрата - сушильной кислотой и цикл повышения концентрации сушильной кислоты моногидра­том. Так как воды, поступающей в моногидратный абсор­бер с сушильной кислотой, практически всегда недоста­точно, чтобы получить нужную концентрацию КИСЛО!.", в сборник моногидратного абсорбера добавляют воду.

В первой промывной башне 6 концентрация кислоты возрастает вследствие поглощения из газа небольшого количества серного ангидрида, образующегося при об­жиге колчедана в печах. Для поддержания стабильной концентрации промывной кислоты в первой промывной башне в ее сборник передается кислота из второй про­мывной башни. Для поддержания необходимой концен­трации кислоты во второй промывной башне в нее пере­дается кислота из увлажнительной башни. Если при этом для получения стандартной концентрации кислоты в первой промывной башне не хватает воды, то ее вводят в сборник либо увлажнительной, либо второй промыв­ной башни.

На контактных сернокислотных заводах обычно по­лучают три вида продукции: олеум, техническую серную кислоту и разбавленную серную кислоту из первой промывной башни (после выделения из кислоты се­лена).

На некоторых заводах промывную кислоту после очистки от примесей используют для разбавления моно­гидрата или для приготовления концентрированной сер­ной кислоты путем разбавления олеума. Иногда олеум просто разбавляют водой.

По схеме, "приведенной на рис. 34, перерабатывается газ, содержащий 4-7,5% S02. При более низкой кон­центрации S02 тепла, выделяющегося в контактном от­делении, не хватает для подогрева газа, поступающего на контактирование (т. е. не обеспечивается автотермич - ность процесса). При более высокой концентрации S02 понижается степень контактирования.

В настоящее время ведутся работы по усовершенство­ванию схемы производства контактной серной кислоты путем нового оформления отдельных стадий этого про­цесса и применения более мощных аппаратов, обеспечи­вающих высокую производительность систем.

На многих заводах на сушильных башнях и моногид - ратных абсорберах применяются распределители кисло­ты, после которых в газе содержится минимальное коли­чество брызг. Кроме того, непосредственно в башнях или после них предусмотрены устройства для отделения ка­пель тумана н брызг. На ряде заводов из технологиче­ской схемы исключена увлажнительная башня; ее отсут­ствие компенсируется увеличением мощности мокрых электрофильтров или некоторым изменением режима ра­боты промывных башен для более интенсивного увлаж­нения газа во второй промывной башне, что дает воз­можность сократить затраты электроэнергии на мокрую очистку.

В сернокислотной промышленности начинают широко применять интенсивные и более совершенные аппараты, заменяющие насадочные башни, оросительные холодиль­ники, центробежные насосы и пр. Например, для выде­ления S02 из отходящих газов в производстве серной кислоты контактным способом применяют интенсивные аппараты распыляющего типа (APT), в которых жид­кость распыляется потоком газа.

В результате применения кислородного дуіья при об­жиге сырья в цветной металлургии повышается концен­трация S02 в отходящих газах, что создает возможность интенсификации сернокислотных систем, работающих на этих газах. Использование кислотостойких материалов при изготовлении аппаратуры для производства серной кислоты контактным способом позволяет значительно улучшить качество продукции и увеличить выпуск реак­тивной серной кислоты.

Главная > Конспект

Общие сведения

Серная кислота – один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

Технологические свойства серной кислоты

В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: n SO 3 . m H 2 O. При n = m = 1 это моногидрат серной кислоты (100%-ная кислота), при m > n – водные растворы моногидрата, при m < n – растворы оксида серы (VI) в моногидрате (олеум):

H 2 SO 4 ·(n – 1) SO 3  H 2 SO 4  H 2 SO 4 (m – 1) H 2 O

олеум моногидрат водная кислота Моногидрат серной кислоты – бесцветная маслянистая жидкость с температурой кристаллизации 10,37 о С, температурой кипения 296,2 о С и плотностью 1, 85 г/cм 3 . С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава H 2 SO 4 . Н 2 O; H 2 SO 4 . 2 H 2 O; H 2 SO 4 . 4 H 2 O и соединения с оксидом серы (VI) состава H 2 SO 4 . SO 3 и H 2 SO 4 . 2SO 3 . Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации. Серная кислота смешивается с водой в любых отношениях, при этом выделяется большое количества тепла. По этой причине следует всегда разбавлять серную кислоту, наливая ее в воду, а не наоборот. Эта кислота гигроскопична , т. е. способна поглощать влагу из воздуха. Поэтому ее используют для осушения газов, не реагирующих с нею, пропуская их через серную кислоту.

Применение серной кислоты и олеума
Высокая активность серной кислоты в сочетании со сравнительно небольшой стоимостью производства предопределили громадные масштабы и чрезвычайное разнообразие ее применения. Трудно найти такую отрасль народного хозяйства, в которой не потреблялась бы в тех или иных количествах серная кислота или произведенные из нее продукты. Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза, составляя в настоящее время более 160 млн. т в год. Производство серной кислоты и олеума (в пересчете на моногидрат) в РФ составило: в 1998 г. 5,7 млн. т. Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60%), а также в производстве красителей (от 2 до 16%), химических волокон (от 5 до 15%) и металлургии (от 2 до 3%). При помощи серной кислоты производятся этиловый и другие спирты, некоторые эфиры, синтетические моющие средства, ряд ядохимикатов для борьбы с вредителями сельского хозяйства и сорными травами. Разбавленные растворы серной кислоты и ее соли применяют в производстве искусственного шелка, в текстильной промышленности для обработки волокна или тканей перед их крашением, а также в других отраслях легкой промышленности. В пищевой промышленности серная кислота применяется при получении крахмала, патоки и ряда других продуктов. Транспорт использует свинцовые сернокислотные аккумуляторы. Наконец, серную кислоту применяют в процессах нитрования и при производстве большей части взрывчатых веществ. На рис. 5. представлено применение серной кислоты и олеума в народном хозяйстве.

Методы получения серной кислоты В настоящее время серная кислота производится двумя способами: нитрозным, существующим более 200 лет, и контактным, освоенным в промышленности в конце XIX и начале XX в. Контактный способ вытесняет нитрозный (башенный). Первой стадией сернокислотного производства по любому методу является получение диоксида серы при сжигании сернистого сырья. После очистки диоксида серы (особенно в контактном методе) ее окисляют до триоксида серы, который соединяется с водой с получением серной кислоты. Окисление SO 2 в SO 3 в обычных условиях протекает крайне медленно. Для ускорения процесса применяют катализаторы. В контактном методе производства серной кислоты окисление диоксида серы в триоксид осуществляется на твердых контактных массах. Благодаря усовершенствованию контактного способа производства себестоимость более чистой и высококонцентрированной контактной серной кислоты лишь незначительно выше, чем башенной. Поэтому в РФ строятся лишь контактные цехи. В настоящее время свыше 90% всей кислоты производится контактным способом. В нитрозном способе катализатором служат оксиды азота, растворенные в серной кислоте. Такой раствор называется нитрозой – отсюда и название метода – нитрозный. Окисление SO 2 происходит в основном в жидкой фазе и осуществляется в башнях с насадкой. Поэтому нитрозный метод по аппаратурному признаку называют башенным . Сущность башенного метода заключается в том, что газ, полученный при сжигании сернистого сырья и содержащий примерно 9% SO 2 и 9 – 10% O 2 , очищается от частиц колчеданного огарка и поступает в башенную систему, которая состоит из нескольких (четырех – семи) башен с насадкой. Башни с насадкой работают по принципу вытеснения при политермическом режиме. Температура газа на входе в первую башню около 350 о С. В башнях протекает ряд абсорбционно-десорбционных процессов, осложненных химическими превращениями. В первых двух-трех башнях насадка орошается нитрозой, в которой растворенные оксиды азота химически связаны в виде нитрозилсерной кислоты NOHSO 4 . При высокой температуре нитрозилсерная кислота гидролизуется по уравнению:

2NOHSO 4 + H 2 O  2H 2 O + N 2 O 3 - Q

Двуокись серы абсорбируется водой и образует сернистую кислоту:

SO 2 + H 2 O  H 2 SO 3 + Q

Последняя реагирует с окислами азота в жидкой фазе:

H 2 SO 3 + N 2 O 3  H 2 SO 4 + 2NO + Q

Частично SO 2 может окисляться в газовой фазе:

SO 2 + N 2 O 3  SO 3 + 2NO + Q

SO 3 , абсорбируясь водой, также дает серную кислоту:

SO 3 + H 2 O  H 2 SO 4 + Q

Окись азота десорбируется в газовую фазу и окисляется до двуокиси азота кислородом воздуха:

2NO + O 2  2NO 2 + Q

Окислы азота NO + NO 2  N 2 O 3 поглощаются серной кислотой в последующих трех-четырех башнях по реакции, обратной уравнению (а). Для этого в башни подают охлажденную серную кислоту с малым содержанием нитрозы, вытекающую из первых башен. При абсорбции окислов получается нитрозилсерная кислота, участвующая в процессе. Таким образом, окислы азота совершают кругооборот и теоретически не должны расходоваться. На практике же из-за неполноты абсорбции имеются потери окислов азота. Расход окислов азота в пересчете на HNO 3 составляет 10-20 кг на тонну моногидрата H 2 SO 4 . Нитрозным способом получают загрязненную примесями и разбавленную 75-77%-ную серную кислоту, которая используется в основном для производства минеральных удобрений.

Сырье для производства серной кислоты

Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых могут быть получена сера или непосредственно оксид серы (IV). Природные залежи самородной серы невелики, хотя кларк ее равен 0,1%.Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов металлов, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов. Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV). При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает. В 1988 году она уже превышала 60% от общего количества серусодержащего сырья. В общей схеме сернокислотного производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты. 1. ЖЕЛЕЗНЫЙ КОЛЧЕДАН. Природный железный колчедан представляет сложную породу, состоящую из сульфида железа FeS 2 , сульфидов других металлов (меди, цинка, свинца, никеля, кобальта и др.), карбонатов металлов и пустой породы. На территории РФ существуют залежи колчедана, на Урале и Кавказе, где его добывают в рудниках в виде рядового колчедана.

Процесс подготовки рядового колчедана к производству ставит целью извлечение из него ценных цветных металлов и повышение концентрации дисульфида железа. Схема подготовки рядового колчедана представлена на рис. 6. 2. СЕРА. Элементарная сера может быть получена из серных руд или из газов, содержащих сероводород или оксид серы (IV). В соответствии с этим различают серу самородную и серу газовую (комовую). На территории РФ залежей самородной серы практически нет. Источниками газовой серы являются Астраханское газоконденсатное месторождение, Оренбургское и Самарское месторождения попутного газа. Из самородных руд серу выплавляют в печах, автоклавах или непосредственно в подземных залежах (метод Фраша). Для этого серу расплавляют непосредственно под землей, нагнетая в скважину перегретую воду, и выдавливают расплавленную серу на поверхность сжатым воздухом. 3. СЕРОВОДОРОД. Источником сероводорода служат различные горючие газы: коксовый, генераторный, попутный, газы нефтепереработки. Извлекаемый при их очистке сероводородный газ достаточно чист, содержит до 90% сероводорода и не нуждается в специальной подготовке. 4. ГАЗЫ ЦВЕТНОЙ МЕТАЛЛУРГИИ. В этих газах содержится от 4 до 10% оксида серы (IV) и они могут непосредственно использоваться для производства серной кислоты. Доля сырья в себестоимости продукции сернокислотного производства достаточно велика. Поэтому технико-экономические показатели этого производства существенно зависят от вида используемого сырья. Замена колчедана серой приводит к снижению капитальных затрат на строительство и улучшению экологической обстановки в результате ликвидации отвалов огарка и уменьшению выбросов токсичных веществ в атмосферу. Вследствие сложностей с транспортом серной кислоты сернокислотные заводы располагаются преимущественно в районах ее потребления. Поэтому производство серной кислоты развито во всех экономических районах РФ. Важнейшими центрами его являются: Щелково, Новомосковск, Воскресенск, Дзержинск, Березняки, Пермь.

Общая схема сернокислотного производства

Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

где: I - стадия получения печного газа (оксида серы (IV)) II - стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции. В общем случае схема производства серной кислоты может быть выражена в следующем виде:Сырье  подготовка сырья  сжигание (обжиг) сырья  очистка печного газа  контактирование  абсорбция контактированного газа  СЕРНАЯ КИСЛОТА. Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

Производство серной кислоты из флотационного колчедана
Химическая и принципиальная схемы производства
Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:- окисление дисульфида железа пиритного концентрата кислородом воздуха:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ,

Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

2SO 2 + O 2 = 2SO 3 ,

Абсорбция оксида серы (IV) с образованием серной кислоты:

SO 3 + H 2 O = H 2 SO 4

По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

Принципиальная (структурная) схема этого производства представлена на рис. 7.

Окислительный обжиг колчедана

Обжиг колчедана в токе воздуха представляет необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа

2FeS 2 = 2FeS + S 2

и окисления продуктов диссоциации:

S 2 + 2O 2 = 2SO 2 ,

4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 ,

что описывается общим уравнением:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 + 3400 кДж.

Скорость процесса обжига зависит от температуры, дисперсности обжигаемого колчедана. Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащением воздуха кислородом и применением избытка воздуха при обжиге до 30% сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 o С, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха. В качестве реакторов для обжига колчедана могут применяться печи различной конструкции: механические, пылевидного обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10000 кг м 2 /сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 мас. долей) и контроль температуры, облегчают процесс утилизации теплоты реакции обжига. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи других типов в производстве серной кислоты из колчедана. Продукты окислительного обжига колчедана - обжиговый (печной) газ и огарок, состоящий из оксида железа (III), пустой породы и невыноревшего остатка дисульфида железа. На практике, при обжиге колчедана печной газ содержит 13-14% оксида серы(IV), 2% кислорода и около 0,1% оксида серы (VI). Так как в печном газе должен быть избыток кислорода для последующего окисления оксида серы (IV), его состав корректируют, разбавляя воздухом до содержания оксида серы (IV) 7 – 9% и кислорода 11 – 9% .

Очистка обжигового (печного) газа

Обжиговый газ необходимо очистить от пыли, сернокислотного тумана и веществ, являющихся каталитическими ядами или представляющих ценность как побочные продукты. В обжиговом газе содержится до 300 г м 3 пыли, которая на стадии контактирования засоряет аппаратуру и снижает активность катализатора, а также туман серной кислоты. Кроме того, при обжиге колчедана одновременно с окислением дисульфида железа окисляются содержащиеся в колчедане сульфиды других металлов. При этом мышьяк и селен образуют газообразные оксиды As 2 O 3 и SeO 2 , которые переходят в обжиговый газ и становятся каталитическими ядами для ванадиевых контактных масс. Пыль и сернокислотный туман удаляют из обжигового газа в процессе общей чистки газа, которая включает операции механической (грубой) и электрической (тонкой) очистки. Механическую очистку газа осуществляют пропусканием газа через центробежные пылеуловители (циклоны) и волокнистые фильтры, снижающие содержание пыли в газе до 10 – 20 г/м 3 . Электрическая очистка газа в электрофильтрах снижает содержание пыли и тумана в газе до 0,05 – 0,1 г/м 3 . После общей очистки обжиговый газ, полученный из колчедана, обязательно подвергается специальной очистке для удаления остатков пыли и тумана и, главным образом, соединений мышьяка и селена, которые при этом утилизируют. В специальную очистку газа входят операции охлаждения его до температуры ниже температур плавления оксида мышьяка (315 0 С) и селена (340 0 С) в башнях, орошаемых последовательно 50% - ной и 20% - ной серной кислотой, удаления сернокислотного тумана в мокрых электрофильтрах и завершающей осушки газа в скрубберах, орошаемых 95%-ной серной кислотой. Из системы специальной очистки обжиговый газ выходит с температурой 140 – 50С. Оксид селена (IV), извлекаемый из обжигового газа, восстанавливается растворенным в серной кислоте оксидом серы (IV) до металлического селена:

SeO 2 + 2SO 2 + 2H 2 O = Se + 2H 2 SO 4 ,

который осаждается в отстойниках. Новым прогрессивным методом очистки обжигового газа является адсорбция содержащихся в нем примесей твердыми поглотителями, например, силикагелем или цеолитами. При подобной сухой очистке обжиговый газ не охлаждается и поступает на контактирование при температуре около 400С, вследствие чего не требует интенсивного дополнительного подогрева.

Контактирование оксида серы (IV )

Реакция окисления оксида серы (IV) до оксида серы (VI), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию и описывается уравнением:

SO 2 + 0,5 O 2  SO 3 - H.

Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 0 С и около 93 кДж при температуре контактирования. Система «SO 2 – O 2 – SO 3 » характеризуется состоянием равновесия в ней и скоростью процесса окисления оксида серы (IV), от которых зависти суммарный результат процесса. Степень превращения оксида серы (IV) в оксид серы (VI) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования. От скорости окисления оксида серы (IV) зависит количество оксида серы (IV), окисляющееся в единицу времени, и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достижимой в данных условиях. Энергия активации реакции окисления оксида серы(IV) кислородом в оксид серы (VI) весьма велика. Поэтому, в отсутствии катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации реакции и увеличить скорость окисления. В производстве серной кислоты в качестве катализатора применяют контактные массы на основе оксида ванадия (V). Температура зажигания контактных ванадиевых масс составляет 380 – 420 0 С и зависит от состава контактируемого газа, повышаясь с уменьшением содержания в нем кислорода. Контактные массы должны находиться в таком состоянии, чтобы были обеспечены минимальное гидравлическое сопротивление потоку газа и возможность диффузии компонентов через слой катализатора. Для этого контактные массы для реакторов с неподвижным слоем катализатора формуются в виде гранул, таблеток или колец, средним диаметром около 5 мм, а для реакторов кипящего слоя в виде шариков диаметром около 1 мм. Реакторы или контактные аппараты для каталитического окисления оксида серы (IV) по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4-5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного газа или воздуха, или с помощью встроенных в аппарат или вынесенных отдельно теплообменников. К преимуществам контактных аппаратов кипящего слоя относятся:- высокий коэффициент теплоотдачи от катализатора в состоянии кипящего слоя к поверхности теплообменника (в 10 раз больше, чем от газа), что позволяет без перегрева вести контактирование печного газа с высоким содержанием оксида серы (IV) и снизить температуру зажигания катализатора;- нечувствительность к пыли, вносимой вместе с печным газом.

Абсорбция оксида серы (VI )

Последней стадией в производстве серной кислоты контактным способом является абсорбция оксида серы (VI) из контактированного газа и превращение его в серную кислоту или олеум. Абсорбция оксида серы (VI) представляет обратимую экзотермическую реакцию и описывается уравнением:

n SO 3 + H 2 O  H 2 SO 4 + (n – 1) SO 3 - H.

Тепловой эффект реакции зависит от значения n и для n = 1 (образование моногидрата серной кислоты) равен 92 кДж. В зависимости от количественного соотношения оксида серы (VI) и воды может быть получен продукт различной концентрации:

    при n  1 олеум, при n = 1 моногидрат (100%-ная серная кислота), при n  1 водный раствор кислоты (разбавленная серная кислота).
Абсорбция оксида серы (VI) сопровождается выделением значительного количества тепла. Поэтому, для обеспечения полноты поглощения оксида серы (VI) процесс ведут при охлаждении газа и абсорбента до 80 0 С и используют аппараты с большим абсорбционным объемом, обеспечивающие интенсивный отвод тепла. С этой же целью процесс абсорбции проводят в две стадии, используя на первой в качестве сорбента 20%-ный олеум, а на второй – 98,3% - ную кислоту (техническое название «моногидрат»).Технологическая схема производства серной кислоты контактным методом В настоящее время в производстве серной кислоты и олеума контактным методом наиболее распространенной является технологическая схема с использованием принципа двойного контактирования «ДК – ДА» (двойное контактирование – двойная абсорбция). Часть подобной схемы, за исключением печного отделения и отделения общей очистки печного газа, технологически однотипных для всех схем, представлена на рис. 8.

Производительность установки до 1500 т/сут. по моногидрату. Расходные коэффициенты (на 1 т моногидрата): колчедан 0,82 т, вода 50 м 3 , электроэнергия 82 кВт ч.

Товарные сорта серной кислоты

Современная промышленность выпускает несколько сортов серной кислоты и олеума, различающихся концентрацией и чистотой (табл. 2). Чтобы уменьшить возможность кристаллизации продуктов при перевозке и хранении, а также в самом производстве, установлены стандарты (ГОСТ 2184-77) на товарные сорта их, концентрации которых отвечают эвтектическим составам с наиболее низкими температурами кристаллизации.Публичный отчет

Самообследование кафедры «Экономики и менеджмента в нефтегазохимическом комплексе» по направлению 080500 – Менеджмент проводилось в соответствии с приказом ректора университета № 1-109 от 01.

  • Отчет о результатах самообследования 080502. 65 Экономика и управление на предприятии

    Публичный отчет

    Самообследование кафедры «Экономики и менеджмента в нефтегазохимическом комплексе» по специальности 080502.65 Экономика и управление на предприятии (по отраслям: химическая промышленность; нефтяная и газовая промышленность) проводилось

  • Федеральное агентство по образованию государственное образовательное учреждение высшего профессионального образования (31)

    Программа

    Современные проблемы философии и культурологии 8 Секция. Психология личности 8 НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ ФАКУЛЬТЕТА 9 ИНФОРМАЦИОННЫХ СИСТЕМ В ЭКОНОМИКЕ И УПРАВЛЕНИИ 9 Секция.

  • Алгоритмы "распределенных согласований" для оценки вычислительной стойкости криптоалгоритмов / Л. К. Бабенко, А. М. Курилкина. М. Урсс, 2008. 108 с

    Документ

    Бабенко, Л.К. Алгоритмы "распределенных согласований" для оценки вычислительной стойкости криптоалгоритмов / Л. К. Бабенко, А. М. Курилкина. - М.

  • 1. Введение

    2. Общая характеристика установки производства серной кислоты

    3. Сырьевые источники получения серной кислоты

    4.Краткое описание промышленных способов получения серной кислоты

    5.Выбор катализатора

    6. Обоснование способа производства

    7. Стадии и химизм процесса

    8. Термодинамический анализ

    9. Кинетика процесса окисления SO 2

    10. Конденсация серной кислоты

    11. Термодинамический анализ процесса конденсации

    12. Описание технологической схемы процесса

    13. Расчет материального баланса

    14. Расчет теплового баланса

    15. Расчет контактного аппарата

    16. Меры безопасности при эксплуатации производственного объекта

    17. Список литературы

    1. Введение

    Серная кислота - один из основных многотоннажных продуктов химической промышленности. Ее применяют в различных отраслях народного хозяйства, поскольку она обладает комплексом особых свойств, облегчающих ее технологическое использование. Серная кислота не дымит, не имеет цвета и запаха, при обычной температуре находится в жидком состоянии, в концентрированном виде не корродирует черные металлы. В то же время, серная кислота относится к числу сильных минеральных кислот, образует многочисленные устойчивые соли и дешева.

    В технике под серной кислотой понимают системы, состоящие из оксида серы (VI) и воды различного состава: п SО 3 · т Н 2 О.

    Моногидрат серной кислоты - бесцветная маслянистая жидкость с температурой кристаллизации 10,37 о С, температурой кипения 296,2 о С и плотностью 1,85 т/м 3 . С водой и оксидом серы (VI) он смешивается во всех отношениях, образуя гидраты состава Н 2 SО 4 · Н 2 О, Н 2 SО 4 · 2Н 2 О, Н 2 SО 4 · 4Н 2 О и соединения с оксидом серы Н 2 SО 4 · SО 3 и Н 2 SО 4 ·2SО 3 .

    Эти гидраты и соединения с оксидом серы имеют различные температуры кристаллизации и образуют ряд эвтектик. Некоторые из этих эвтектик имеют температуру кристаллизации ниже нуля или близкие к нулю. Эти особенности растворов серной кислоты учитываются при выборе ее товарных сортов, которые по условиям производства и хранения должны иметь низкую температуру кристаллизации.

    Температура кипения серной кислоты также зависит от ее концентрации, то есть состава системы "оксид серы (VI) - вода". С повышением концентрации водной серной кислоты температура ее кипения возрастает и достигает максимума 336,5 о С при концентрации 98,3 %, что отвечает азеотропному составу, а затем снижается. Температура кипения олеума с увеличением содержания свободного оксида серы (VI) снижается от 296,2 о С (температура кипения моногидрата) до 44,7 о С, отвечающей температуре кипения 100 %-ного оксида серы (VI).

    При нагревании паров серной кислоты выше 400 о С она подвергается термической диссоциации по схеме:

    400 о С 700 о С

    2 Н 2 SО 4 <=> 2Н 2 О + 2SО 3 <=> 2Н 2 О + 2SО 2 + О 2 .

    Среди минеральных кислот серная кислота по объему производства и потребления занимает первое место. Мировое производство ее за последние 25 лет выросло более чем в три раза и составляет в настоящее время более 160 млн. т в год.

    Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (от 30 до 60 %), а также в производстве красителей (от 2 до 16 %), химических волокон (от 5 до 15 %) и металлургии (от 2 до 3 %). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности.

    2. Общая характеристика установки производства серной кислоты

    Установка предназначена для получения технической серной кислоты из сероводородсодержащего газа. Сероводородный газ поступает с установок гидроочистки, блока сероочистки газов, установки регенерации амина и отпарки кислых стоков.

    Ввод установки в эксплуатацию - 1999 г.

    Установка производства серной кислоты рассчитана на переработку 24 тыс. тонн в год сероводородсодержащего газа.

    Проектная производительность установки по серной кислоте составляет 65 тыс. тонн в год.

    Проект установки выполнен ОАО "ВНИПИнефть" на основании технологии датской фирмы "Хальдор Топсе АС" и ОАО "НИУИФ" г. Москва.

    Российская часть установки представлена секцией подготовки сырья, котлами-утилизаторами КУ-А,В,С сжигания сероводородсодержащего газа, блоками деаэрации обессоленной воды, нейтрализации сернокислотных сбросов и обеспечения установки воздухом КИП.

    Датской стороной предоставлен блок WSA в составе:

    · контактного аппарата (конвертера);

    · конденсатора;

    · системой циркуляции и откачки серной кислоты;

    · системой воздуходувок подачи воздуха на сжигание H 2 S, охлаждения и разбавления технологического газа;

    · системой подачи силиконового масла (блок управления кислотными парами) в технологический газ с целью снижения выбросов SO x в атмосферу.

    3. Сырьевые источники получения серной кислоты

    Сырьем в производстве серной кислоты могут быть элементарная сера и различные серусодержащие соединения, из которых может быть получена сера или непосредственно оксид серы (IV).

    Природные залежи самородной серы невелики, хотя кларк ее равен 0,1 %. Чаще всего сера находится в природе в форме сульфидов металлов и сульфатов метало, а также входит в состав нефти, каменного угля, природного и попутного газов. Значительные количества серы содержатся в виде оксида серы в топочных газах и газах цветной металлургии и в виде сероводорода, выделяющегося при очистке горючих газов.

    Таким образом, сырьевые источники производства серной кислоты достаточно многообразны, хотя до сих пор в качестве сырья используют преимущественно элементарную серу и железный колчедан. Ограниченное использование таких видов сырья, как топочные газы тепловых электростанций и газы медеплавильного производства, объясняется низкой концентрацией в них оксида серы (IV).

    При этом доля колчедана в балансе сырья уменьшается, а доля серы возрастает.

    В общей схеме сернокислотного производства существенное значение имеют две первые стадии – подготовка сырья и его сжигание или обжиг. Их содержание и аппаратурное оформление существенно зависят от природы сырья, которая в значительной степени, определяет сложность технологического производства серной кислоты.

    4. Краткое описание промышленных способов получения серной кислоты

    Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы:

    где I – стадия получения печного газа (оксида серы (IV)),

    II – стадия каталитического окисления оксида серы (IV) до оксида серы (VI) и абсорбции его (переработка в серную кислоту).

    В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции.

    В общем случае производство серной кислоты может быть выражено в следующем виде:

    подготовка сырья сжигание (обжиг) сырья очистка печного газа контактирование абсорбция

    контактированного газа

    СЕРНАЯ КИСЛОТА

    Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI).

    В зависимости от того, как осуществляется процесс окисления SО 2 вSО 3 , различают два основных метода получения серной кислоты.

    В контактном методе получения серной кислоты процесс окисления SО 2 вSО 3 проводят на твердых катализаторах.

    Триоксид серы переводят в серную кислоту на последней стадии процесса – абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции:

    SО 3 + Н 2 О

    Н 2 SО 4

    При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.

    Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:

    SО 3 + N 2 О 3 + Н 2 О

    Н 2 SО 4 + 2NО

    В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью.

    1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

    Окисление дисульфида железа пиритного концентрата кислородом воздуха:

    4FеS 2 + 11О 2 = 2Fе 2 S 3 + 8SО 2 ,

    Каталитическое окисление оксида серы (IV) избытком кислорода печного газа:

    2SО 3

    Абсорбция оксида серы (VI) с образованием серной кислоты:


    SО 3 + Н 2 О

    Н 2 SО 4

    По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

    “Едва ли найдется другое, искусственно добываемое вещество, столь часто применяемое в технике, как серная кислота.

    Где нет заводов для ее добывания - немыслимо выгодное производство многих других веществ, имеющих важное технические значение”

    Д.И. Менделеев

    Серная кислота применяется в разнообразных производствах химической промышленности:

    • минеральных удобрений, пластмасс, красителей, искусственных волокон, минеральных кислот, моющих средств;
    • в нефтяной и нефтехимической промышленности:
    для очистки нефти, получения парафинов;
    • в цветной металлургии:
    для получения цветных металлов - цинка, меди, никеля и др.
    • в черной металлургии:
    для травления металлов;
    • в целлюлозно-бумажной, пищевой и легкой промышленности (для получения крахмала, патоки, отбеливания тканей) и т.д.

    Производство серной кислоты

    Серную кислоту в промышленности производят двумя способами: контактным и нитрозным.

    Контактный способ производства серной кислоты

    Серную кислоту контактным способом производят в больших количествах на сернокислотных заводах.

    В настоящее время основным методом производства серной кислоты является контактный, т.к. этот метод имеет преимущества перед другими:

    Получение продукта в виде чистой концентрированной кислоты, приемлемой для всех потребителей;

    - уменьшение выбросов вредных веществ в атмосферу с выхлопными газами

    I. Сырьё, используемое для производства серной кислоты.

    Основное сырьё

    сера - S

    серный колчедан (пирит) - FeS 2

    сульфиды цветных металлов - Cu 2 S , ZnS , PbS

    сероводород – H 2 S

    Вспомогательный материал

    Катализатор - оксид ванадия – V 2 O 5

    II. Подготовка сырья.

    Разберём производство серной кислоты из пирита FeS 2 .

    1) Измельчение пирита. Перед использованием большие куски пирита измельчают в дробильных машинах. Вы знаете, что при измельчении вещества скорость реакции увеличивается, т.к. увеличивается площадь поверхности соприкосновения реагирующих веществ.

    2) Очистка пирита. После измельчения пирита, его очищают от примесей (пустой породы и земли) методом флотации. Для этого измельчённый пирит опускают в огромные чаны с водой, перемешивают, пустая порода всплывает наверх, затем пустую породу удаляют.

    III . Основные химические процессы:

    4 FeS 2 + 11 O 2 t = 800° C 2 Fe 2 O 3 + 8 SO 2 + Q или сжигание серы S + O 2 t ° C SO 2

    2SO 2 + O 2 400-500° С ,V2O5 , p 2SO 3 + Q

    SO 3 + H 2 O → H 2 SO 4 + Q

    IV . Технологические принципы:

    Принцип непрерывности;

    Принцип комплексного использования сырья, использование отходов другого производства;

    Принцип безотходного производства;

    Принцип теплообмена;

    Принцип противотока (“кипящий слой”);

    Принцип автоматизации и механизации производственных процессов.

    V . Технологические процессы:

    Принцип непрерывности: обжиг пирита в печи →поступление оксида серы (IV ) и кислорода в очистительную систему →в контактный аппарат →подача оксида серы (VI ) в поглотительную башню.

    VI . Охрана окружающей среды:

    1) герметичность трубопроводов и аппаратуры

    2) газоочистительные фильтры

    VII . Химизм производства :



    ПЕРВАЯ СТАДИЯ - обжиг пирита в печи для обжига в "кипящем слое".

    Для получения серной кислоты используют, в основном,флотационный колчедан - отход производства при обогащении медных руд, содержащих смеси сернистых соединений меди и железа. Процесс обогащения этих руд происходит на Норильской и Талнахской обогатительных фабриках, которые и являются основными поставщиками сырья. Это сырье является более выгодным, т.к. серный колчедан добывают, в основном, на Урале, и, естественно, доставка его может быть очень дорогостоящей. Возможно использование серы , которая также образуется при обогащении руд цветных металлов, добываемых на рудниках. Поставщиками серы являются также ТОФ и НОФ. (обогатительные фабрики).

    Уравнение реакции первой стадии

    4FeS 2 + 11O 2 t = 800°C → 2Fe 2 O 3 + 8SO 2 + Q

    Измельчённый очищенный влажный (после флотации) пирит сверху засыпают в печь для обжига в "кипящем слое". Снизу (принцип противотока) пропускают воздух, обогащённый кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800°С. Пирит раскаляется до красна и находится в "подвешенном состоянии" из-за продуваемого снизу воздуха. Похоже это всё на кипящую жидкость раскалённо-красного цвета. В “кипящем слое” не слеживаются даже самые мелкие частицы пирита. Поэтому процесс обжига происходит очень быстро. Если раньше для обжига пирита требовалось 5-6 часов, то теперь - всего несколько секунд. Притом, в “кипящем слое” можно поддерживать температуру 800°С.

    За счёт выделяющейся теплоты в результате реакции поддерживается температура в печи. Избыточное количество теплоты отводят: по периметру печи проходят трубы с водой, которая нагревается. Горячую воду используют дальше для центрального отопления рядом стоящих помещений.

    Образовавшийся оксид железа Fe 2 O 3 (огарок) в производстве серной кислоты не используют. Но его собирают и отправляют на металлургический комбинат, на котором из оксида железа получают металл железо и его сплавы с углеродом - сталь (2% углерода С в сплаве) и чугун (4% углерода С в сплаве).

    Таким образом, выполняется принцип химического производства - безотходность производства.

    Из печи выходит печной газ , состав которого: SO 2 , O 2 , пары воды (пирит был влажный!) и мельчайшие частицы огарка (оксида железа). Такой печной газ необходимо очистить от примесей твёрдых частиц огарка и паров воды.

    Очистка печного газа от твёрдых частичек огарка проводят в два этапа - в циклоне (используется центробежная сила, твёрдые частички огарка ударяются о стенки циклона и ссыпаются вниз). Для удаления мелких частиц смесь направляем в электрофильтры, где идет очищение под действием тока высокого напряжения ~ 60000 В (используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра, при достаточном накоплении под собственной тяжестью они ссыпаются вниз), для удаления паров воды в печном газе (осушка печного газа) используют серную концентрированную кислоту, которая является очень хорошим осушителем, поскольку поглощает воду.

    Осушку печного газа проводят в сушильной башне - снизу вверх поднимается печной газ, а сверху вниз льётся концентрированная серная кислота. Для увеличения поверхности соприкосновения газа и жидкости башню заполняют керамическими кольцами.

    На выходе из сушильной башни печной газ уже не содержит ни частичек огарка, ни паров воды. Печной газ теперь представляет собой смесь оксида серы SO 2 и кислорода О 2 .

    ВТОРАЯ СТАДИЯ – каталитическое окисление SO 2 в SO 3 кислородом в контактном аппарате.

    Уравнение реакции этой стадии:

    2 SO 2 + O 2 400-500°С, V 2 O 5 ,p 2 SO 3 + Q

    Сложность второй стадии заключается в том, что процесс окисления одного оксида в другой является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO 3).

    Из уравнения следует, что реакция обратимая, а, значит, на этой стадии необходимо поддерживать такие условия, чтобы равновесие смещалось в сторону выхода SO 3 , иначе нарушится весь процесс. Т.к. реакция идет с уменьшением объема (3 V ↔2 V ), то необходимо повышенное давление. Повышают давление до 7-12 атмосфер. Реакция экзотермическая, поэтому, учитывая принцип Ле-Шателье, при высокой температуре этот процесс вести нельзя, т.к. равновесие сдвинется влево. Начинается реакция при температуре = 420 градусов, но благодаря многослойности катализатора (5 слоев), мы можем ее повышать до 550 градусов, что значительно ускоряет процесс. Катализатор используют ванадиевый (V 2 O 5). Он дешевый, долго служит (5-6 лет), т.к. наиболее устойчив к действию ядовитых примесей. Кроме того, он способствует сдвигу равновесия вправо.

    Смесь (SO 2 и O 2) нагревается в теплообменнике и движется по трубам, между которыми в противоположном направлении проходит холодная смесь, которую надо нагреть. В результате происходит теплообмен : исходные вещества нагреваются, а продукты реакции охлаждаются до нужных температур.

    ТРЕТЬЯ СТАДИЯ - поглощение SO 3 серной кислотой в поглотительной башне.

    А почему оксид серы SO 3 не поглощают водой? Ведь можно было бы оксид серы растворить в воде: SO 3 + H 2 O →H 2 SO 4 . Но дело в том, что если для поглощения оксида серы использовать воду, образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты (оксид серы растворяется в воде с выделением большого количества теплоты, серная кислота настолько разогревается, что закипает и превращается в пар). Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Два процента воды - это так мало, что нагревание жидкости будет слабым и неопасным. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H 2 SO 4 ·nSO 3 .

    Уравнение реакции этого процесса:

    NSO 3 + H 2 SO 4 → H 2 SO 4 ·nSO 3

    Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

  • 7.3. Контактирование оксида серы (IV)
  • 7.5. Технологическая схема производства серной кислоты контактным методом
  • 7.1. Химическая и принципиальная схемы производства

    Химическая схема получения серной кислоты из колчедана включает три последовательные стадии:

    По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий.

    Принципиальная (структурная) схема этого производства представлена на рис. 7.1.

    Рисунок 7.1 – Структурная схема производства серной кислоты из флотационного колчедана.

    • I – получение обжигового газа: 1 – обжиг колчедана; 2 – охлаждение газа в котле–утилизаторе; 3 – общая очистка газа; 4 – специальная очистка газа;
    • II – контактирование: 5 – подогрев газа в теплообменнике; 6 – контактирование;
    • III – абсорбция: 7 – абсорбция оксида серы (VI) и образование серной кислоты

    7.2. Окислительный обжиг колчедана

    Обжиг колчедана в токе воздуха представляет необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа:

    и окисления продуктов диссоциации

    что описывается общим уравнением:

    Скорость процесса окислительного обжига выражается общим для гетерогенных процессов уравнением

    • где К М – коэффициент массопередачи;
    • F – поверхность контакта фаз (катализатора);
    • D С – движущая сила процесса.

    Таким образом, скорость процесса обжига зависит от температуры (через К М), дисперсности обжигаемого колчедана (через F, концентрации дисульфида железа в колчедане и концентрации кислорода в воздухе (через DС)). На рис. 7.2 представлена зависимость скорости обжига колчедана от температуры и размеров частиц обжигаемого колчедана.

    Рисунок 7.2 – Зависимость скорости обжига колчедана от температуры (а) и размеров частиц (б)

    Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащение воздуха кислородом и применением избытка воздуха при обжиге до 30% сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 0 С, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха.

    В качестве реакторов для обжига колчедана могут применяться печи различной конструкции: механические, пылевидного обжига, кипящего слоя (КС). Печи кипящего слоя отличаются высокой интенсивностью (до 10000 кг/м 2 ×сут), обеспечивают более полное выгорание дисульфида железа (содержание серы в огарке не превышает 0,005 масс. долей) и контроль температуры, облегчают процесс утилизации теплоты. К недостаткам печей КС следует отнести повышенное содержание пыли в газе обжига, что затрудняет его очистку. В настоящее время печи КС полностью вытеснили печи других типов в производстве серной кислоты из колчедана.

    Обжиговый (печной) газ и огарок - продукты окислительного обжига колчедана. Огарок, состоит из оксида железа (III), пустой породы и невыгоревшего остатка дисульфида железа.

    Состав обжигового газа зависит от природы сырья, состава и избытка воздуха при его обжиге. В него входят оксид серы (IV), кислород, азот и незначительное количество оксида серы (VI), образовавшегося за счет каталитического действия оксида железа (III). Если не учитывать содержание последнего, то соотношение между кислородом и оксидом серы (IV) в печном газе может быть выражено следующими уравнениями:

    • при обжиге колчедана С О2 = 21 – 1,296 С SO 2 ; (7.2а)
    • при сжигании серы С О2 = 21 – С SO 2 ; (7.2б)
    • при сжигании сероводорода С О2 = 21 – 1,605С SO 2 , (7.2в)

    где С SO 2 и С О2 – содержание оксида серы (IV) и кислорода в печном газе.

    На практике при обжиге колчедана печной газ содержит 13–14% оксида серы (IV), 2 % кислорода и около 0,1% оксида серы (VI). Так как в печном газе должен быть избыток кислорода для последующего окисления оксида серы (IV), его состав корректируют, разбавляя воздухом до содержания оксида серы (IV) 7–9% и кислорода 11–9%.

    7.3. Очистка обжигового (печного) газа

    Обжиговый газ необходимо очистить от пыли, сернокислотного тумана и веществ, являющихся каталитическими ядами или представляющих ценность как побочные продукты. В обжиговом газе содержится до 300 г/м 3 пыли, которая на стадии контактирования засоряет аппаратуру и снижает активность катализатора, а также туман серной кислоты. Кроме того, при обжиге колчедана одновременно с окислением дисульфида железа окисляются содержащиеся в колчедане сульфиды других металлов. При этом мышьяк и селен образуют газообразные оксиды As 2 O 3 и SeO 2 , которые переходят в обжиговый газ и становятся каталитическими ядами для ванадиевых контактных масс.

    Пыль и сернокислотный туман удаляют из обжигового газа в процессе общей очистки газа, которая включает операции механической (грубой) и электрической (тонкой) очистки. Механическая очистка газа осуществляется пропусканием газа через центробежные пылеуловители (циклоны) и волокнистые фильтры, снижающие содержание пыли в газе до 10–20 г/м 3 . Электрическая очистка газа в электрофильтрах снижает содержание пыли и тумана в газе до 0,05–0,1 г/м 3 .

    После общей очистки обжиговый газ, полученный из колчедана, обязательно подвергается специальной очистке для удаления остатков пыли и сернокислотного тумана и, главным образом, соединений мышьяка и селена, которые при этом утилизируют. Специальная очистка газа включает операции охлаждения его до температуры ниже температур плавления оксида мышьяка (315 0 С) и селена (340 0 С) в башнях, орошаемых последовательно 50% (полая башня) и 20% серной кислотой (башня с насадками), удаления сернокислотного тумана в мокрых электрофильтрах и завершающей осушки газа в скрубберах, орошаемых 95% серной кислотой. Из системы специальной очистки обжиговый газ выходит с температурой 140–150 0 С.

    Оксид селена (IV), извлекаемый из обжигового газа, восстанавливается растворенным в серной кислоте оксидом серы (IV) до металлического селена: который осаждается в отстойниках.

    Новым прогрессивным методом очистки обжигового газа является адсорбция содержащихся в нем примесей твердыми поглотителями, например, силикагелем или цеолитами. При подобной сухой очистке обжиговый газ не охлаждается и поступает на контактирование при температуре около 400 0 С, вследствие чего не требует интенсивного дополнительного подогрева.

    7.3. Контактирование оксида серы (IV)

    Процесс контактирования обжигового газа – реакция окисления оксида серы IV) до оксида серы (VI), представляет собой гетерогенно–каталитическую, обратимую, экзотермическую реакцию и описывается уравнением

    Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 0 С и около 93 кДж при температуре контактирования. Система «SO 2 – O 2 – SO 3 » характеризуется состоянием равновесия в ней и скоростью процесса окисления оксида серы (IV), от которых зависит суммарный результат процесса.

    7.3.1. Равновесие в системе

    Константа равновесия реакции окисления оксида серы (IV) равна

    где: p SO 3 , p SO 2 , p O 2 – равновесные парциальные давления оксида серы (VI), оксида серы (IV) и кислорода соответственно.

    Степень превращения оксида серы (IV) в оксид серы (IV) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования и описывается уравнением

    где p SO 3 и p SO 2 –те же величины, что и в (7.3).

    Из уравнений 7.3 и 7.4 следует, что равновесная степень превращения оксида серы (IV) связана с константой равновесия реакции окисления уравнением

    где К р – константа равновесия.

    Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе представлена в таблице 7.2 и на рис. 7.3.

    Таблица 7.2 – Зависимость Х р от температуры, давления и содержания оксида серы (IV) в обжиговом газе

    Температура, 0 С*

    Давление, МПа**

    * При давлении 0,1 МПа и содержании оксида серы (IV) 0,07 об. долей.

    ** При температуре 400 0 С и содержании оксида серы (IV) 0,07 об.долей.

    Рисунок 7.3 – Зависимость равновесной степени превращения оксида серы (IV) в оксид серы (VI) от температуры (а), давления (б) и содержания оксида серы (IV) в газе (в)

    Из уравнения 7.5 и табл. 7.2 следует, что с понижением температуры и повышением давления контактируемого газа равновесная степень превращения Х р возрастает, что согласуется с принципом Ле–Шателье. В то же время при постоянных температуре и давлении равновесная степень превращения тем больше, чем меньше содержание оксида серы (IV) в газе, то есть чем меньше отношение SO 2: O 2 . Это отношение зависит от вида обжигаемого сырья и избытка воздуха. На этой зависимости основана операция корректирования состава печного газа, то есть разбавление его воздухом для снижения содержания оксида серы (IV).

    Степень окисления оксида серы (IV) возрастает с увеличением времени контактирования, приближаясь к равновесию по затухающей кривой (рис. 1.4). Следовательно, время контактирования должно быть таким, чтобы обеспечить достижение равновесия в системе. Из рис. 1.4 следует, что чем выше температура, тем скорее достигается равновесие (t 1 < t 2), но тем меньше равновесная степень превращения (Х 1 < X 2 при Т 1 > T 2). Таким образом, выход оксида серы (VI) зависит как от температуры, так и от времени контактирования. При этом для каждого времени контактирования зависимость выхода от температуры выражается соответствующей кривой, имеющей максимум. Очевидно, что огибающая эти максимумы линия АА (рис.1.5) представляет кривую оптимальных температур для различного времени контактирования, близкую к равновесной кривой.

    7.3.2. Скорость окисления оксида серы (IV)

    От скорости окисления зависит количество оксида серы (IV), окисляющееся в единицу времени и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достигаемой в данных условиях.

    Энергия активации реакции окисления оксида серы (IV) кислородом в оксид серы (VI) весьма велика. Поэтому при отсутствии катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации реакции и увеличить скорость окисления в соответствии с зависимостью для константы скорости:

    • где k 0 – константа скорости химической реакции;
    • E – энергия активации, Дж/моль;
    • R – универсальная газовая постоянная (8,326 Дж/моль * К);
    • T – температура, 0 К.

    Если без катализатора реакция окисления 2SO 2 + O 2 = 2 SO 3 протекает как реакция третьего порядка с энергией активации более 280 кДж/моль, то в присутствии ванадиевого катализатора ее порядок снижается до 1,8, а энергия активации составляет 92 кДж/моль.

    В производстве серной кислоты в качестве катализатора применяют константные массы на основе оксида ванадия (V) марок БАВ и СВД, названные так по начальным буквам элементов, входящих в их состав:

    БАВ (барий, алюминий, ванадий) состава:

    СВД (сульфо-ванадато-диатомовый) состава:

    Предполагается, что процесс окисления оксида серы (IV) на этих катализаторах идет через стадию диффузии реагентов к поверхности катализатора, на которой образован комплекс оксида ванадия (V) с активатором, сорбции реагентов на катализаторе с последней десорбцией продукта реакции (оксида серы (VI)):

    Схема действия ванадиевого катализатора представлена на рис. 1.6.

    Рисунок 7.6 – Схема действия катализатора: I – диффузия; II – сорбция; III – образование комплекса; IV – десорбция

    Процесс катализа состоит из нескольких последовательно протекающих элементарных актов: диффузии молекул азота, кислорода и оксида серы (IV) к катализатору (I), хемосорбции молекул реагентов на поверхности катализатора (II), химического взаимодействия кислорода и оксида серы (IV) на поверхности катализатора с переносом электронов от молекул оксида серы к молекулам кислорода и образованием неустойчивых комплексов (III) , десорбции образовавшихся молекул оксида серы (VI) (IV) и диффузии их из пор и с поверхности катализатора в газовую фазу.

    Температура зажигания контактных ванадиевых масс составляет 380–420 0 С и зависит от состава контактируемого газа, повышаясь с уменьшением содержания в нем кислорода. Контактные массы должны находиться в таком состоянии, чтобы были обеспечены минимальное гидравлическое сопротивление потоку газа и возможность диффузии компонентов через слой катализатора. Для этого контактные массы для реакторов с неподвижным слоем катализатора формуются в виде гранул, таблеток или колец средним диаметром около 5 мм, а для реакторов кипящего слоя в виде шариков диаметром около 1 мм.

    Для описания скорости окисления оксида серы (IV) в оксид серы (VI) на ванадиевом катализаторе при неподвижном слое катализатора предложены различные кинетические уравнения. К ним относятся уравнение 1.7, связывающее скорость реакции со степенью превращения оксида серы (IV) , константой скорости реакции, константой равновесия и давлением газа:

    • где Х – равновесная степень превращения оксида серы (IV);
    • k – константа скорости реакции окисления;
    • а – начальная концентрация оксида серы (IV) в газе;
    • b – начальная концентрация кислорода в газе;
    • Р – общее давление газа;
    • К р – константа равновесия реакции.

    Из уравнений 7.7 и 7.8 следует, что скорость окисления зависит от константы скорости реакции, сильно возрастающей при повышении температуры (уравнение 1.6). Однако при этом уменьшается константа равновесия К р (уравнение 1.3) и уменьшается значение члена в уравнении 1.7. Таким образом, скорость процесса окисления оксида серы (IV) зависит от двух величин, изменяющихся с ростом температуры в противоположном направлении. Вследствие этого кривая зависимости скорости окисления от температуры должна проходить через максимум. Из уравнения 1.7 также следует, что скорость окисления оксида серы (IV) тем больше, чем меньше достигаемая в этом процессе степень превращения оксида серы (IV) в оксид серы (VI). Вследствие этого для каждой степени превращения зависимость скорости реакции от температуры будет выражаться индивидуальной кривой, имеющей максимум. На рис. 7.7 представлена серия подобных кривых, соответствующих различным степеням превращения для газа постоянного состава. Из него следует, что скорость реакции окисления достигает максимума при определенных значениях температур, которые тем выше, чем меньше эта степень превращения. Линия АА, соединяющая точки оптимальных температур, называется линией оптимальной температурной последовательности (ЛОТ) и указывает, что для достижения наилучших результатов процесс контактирования следует начинать при высокой температуре, обеспечивающей большую скорость процесса (на практике около 600 0 С), а затем для достижения высокой степени превращения снижать температуру, выдерживая температурный режим по ЛОТ.

    Рисунок 7.7 – Зависимость скорости окисления оксида серы (IV) от температуры при различных степенях превращения Х1

    Линии ВВ и СС на рис. 1.7 очерчивают область допустимых колебаний температуры в реальном технологическом процессе контактирования.

    Обеспечение высокой температуры в начале процесса окисления требует больших затрат энергии на подогрев газа, поступающего на контактирование. Поэтому на практике температуру газа на входе в контактный аппарат, поступающего на первый слой катализатора, задают лишь несколько выше температуры зажигания (порядка 420 0 С). В ходе реакции выделяется большое количество тепла, и так как процесс в слое катализатора идет без отвода тепла, то температура газа повышается по адиабате 1, пока не достигает величины, равной 0,8 ЛОТ (рис.7.8). После этого газ охлаждают в теплообменнике (линия а) до тех пор, пока температура не достигнет величины 0,8 ЛОТ. После теплообменника газ направляют на второй слой катализатора и ведут процесс по адиабате 2, затем снова охлаждают и продолжают процесс до тех пор, пока не будет достигнута заданная степень контактирования Х. Обычно для этого достаточно иметь в контактном аппарате 4–5 слоев контактной массы. В табл. 7.3 представлен температурный режим 4–слойного контактного аппарата с промежуточным теплообменом, установленный в соответствии с изложенным выше принципом.

    Рисунок 7.8 – Диаграмма контактирования для 4 слоев Кт: 1,2,3,4 – адиабаты; а, б, в, г – линии охлаждения

    Таблица 7.3 – Температурный режим контактного узла

    Таким образом, противоречие между кинетикой и термодинамикой процесса окисления оксида серы (IV) достаточно успешно снимается конструкцией и температурным режимом работы контактного аппарата. Это достигается разбивкой процесса на стадии, каждая из которых отвечает оптимальным условиям протекания процесса контактирования. Тем самым определяются и начальные параметры режима контактирования: температура 400–440 0 С, давление 0,1 Мпа, содержание оксида серы (IV) в газе 0,07-0,09 об. Долей, содержание кислорода в газе 0,09- 0,11 об. долей.

    Реакторы или контактные аппараты для каталитического окисления оксида серы (IV) по своей конструкции делятся на аппараты с неподвижным слоем катализатора (полочные или фильтрующие), в которых контактная масса расположена в 4–5 слоях, и аппараты кипящего слоя. Отвод тепла после прохождения газом каждого слоя катализатора осуществляется путем введения в аппарат холодного газа или воздуха или с помощью встроенных в аппарат или вынесенных отдельно теплообменников (принцип рекуперации).

    Рисунок 7.9 – Конструкции контактных аппаратов: а – контактный узел: 1 – контактный аппарат, б – контактный аппарат кипящего слоя; 2 - теплообменник.

    Совокупность контактного аппарата, теплообменников и газопроводов представляет контактный узел. На рис. 7.9 представлены контактный узел, состоящий из контактного аппарата фильтрующего типа, и выносных теплообменников, и контактный аппарат кипящего слоя.

    К преимуществам контактных аппаратов кипящего слоя относятся:

    • высокий коэффициент теплоотдачи от катализатора в состоянии кипящего слоя к поверхности теплообменника (в 10 раз больше, чем от газа), что позволяет без перегрева вести контактирование печного газа с высоким содержанием оксида серы (IV) и снизить температуру зажигания катализатора;
    • нечувствительность к пыли, вносимой вместе с печным газом.

    7.3.3. Двойное контактирование

    Важнейшей задачей совершенствования сернокислотного производства являются увеличение степени контактирования и снижение выбросов оксида серы (IV) в атмосферу. В обычном процессе повышение степени контактирования выше 0,98 дол. Единицы нецелесообразно, так как связано с резким увеличением количества и числа слоев контактной массы. Однако даже при этой максимальной для обычного процесса степени контактирования выброс оксида серы (IV) может достигать на современных установках 35–60 т/сутки. Помимо значительных потерь продукции это вызывает необходимость в сложных и дорогостоящих очистных сооружениях для нейтрализации отходящих газов.

    Метод двойного двойного контактирования двойной абсорбции (ДКДА) применяют для увеличения конечной степени контактирования и ведут процесс окисления оксида серы (IV) в две стадии. На первой стадии контактирование ведут до степени превращения, не превышающей 0,90–0,92 дол. , после чего из контактированного газа выделяют оксид серы (VI). Затем проводят вторую стадию контактирования до степени превращения оставшегося в газе оксида серы (IV) 0,95 дол. единицы. Конечная степень контактирования определяется в этом случае как

    • где Х 1 – степень контактирования на первой стадии;
    • Х 2 – степень контактирования на второй стадии.

    Метод двойного контактирования позволяет повысить степень контактирования до 0,995 дол. ед. и на несколько порядков снизить выброс оксида серы (IV) в атмосферу. На рис. 7.10 представлена схема двойного контактирования с использованием контактного аппарата фильтрующего типа, применяемая в установках ДК–ДА.

    Рисунок 7.10 – Схема двойного контактирования

    7.4. Абсорбция оксида серы (VI)

    Абсорбция оксида серы (VI) является последней стадией в производстве серной кислоты контактным способом из контактированного газа и превращение его в серную кислоту или олеум. Абсорбция оксида серы (VI) представляет обратимую экзотермическую реакцию и описывается уравнением

    Тепловой эффект реакции зависит от значения n и для n = 1 (образование моногидрата серной кислоты) равен 92 кДж.

    В зависимости от количественного соотношения оксида серы (VI) и воды может быть получен продукт различной концентрации:

    • при n > 1 олеум;
    • при n = 1 моногидрат (100% серная кислота);
    • при n < 1 водный раствор кислоты (разбавленная серная кислота).

    Для процесса абсорбции оксида серы (VI) существенное значение имеет природа абсорбента. Скорость абсорбции описывается уравнением

    • где К – коэффициент абсорбции;
    • F – поверхность раздела фаз «абсорбент–газ»;
    • Dр – движущая сила процесса абсорбции.

    Движущая сила процесса абсорбции

    Так как p* SO 3 задается составом газа, то движущая сила и, следовательно, скорость процесса абсорбции будут тем больше, чем меньше равновесное давление оксида серы (VI) над сорбентом.

    Кроме этого, при высоком равновесном давлении над сорбентом паров воды p* Н2О вследствие взаимодействия молекул воды с молекулами оксида серы (VI) образуются пары серной кислоты, конденсирующиеся с возникновением трудно улавливаемого тумана серной кислоты:

    Таким образом, наилучшей поглощающей способностью будет обладать абсорбент с минимальным равновесным давлением над ним оксида серы (VI) и паров воды. Этому условию в максимальной степени удовлетворяет азеотроп серной кислоты концентрацией 98,3%. Использование серной кислоты более низкой концентрации приводит к интенсивному образованию тумана, а применение 100% кислоты или олеума – к снижению степени абсорбции. На рис. 7.11 представлена зависимость скорости абсорбции оксида серы (VI) от концентрации серной кислоты, используемой в качестве абсорбента.

    Абсорбция оксида серы (VI) сопровождается выделением значительного количества тепла. Поэтому для обеспечения полноты поглощения оксида серы (VI) процесс ведут при охлаждении газа и абсорбента до 80 0 С и используют аппараты с большим абсорбционным объёмом.

    На рис. 7.11 представлена схема абсорбции.

    Рисунок 7.11 – Схема двухстадийного процесса абсорбции:

    1. холодильник газа;
    2. олеумный абсорбер;
    3. моногидратный абсорбер;
    4. сушильная башня;
    5. холодильник жидкого продукта;
    6. сборник олеума;
    7. сборник моногидрата

    Подобная схема абсорбции позволяет получать, кроме контактной серной кислоты концентрацией 92–93%, также олеум различной концентрации.

    7.5. Технологическая схема производства серной кислоты контактным методом

    В настоящее время в производстве серной кислоты и олеума контактным методом наиболее распространенной является технологическая схема с использованием принципа двойного контактирования «ДК–ДА» (двойное контактирование – двойная абсорбция). Часть подобной схемы, за исключением печного отделения и отделения общей очистки печного газа, технологически однотипных для всех схем, представлена на рис. 7.12

    Рисунок 7.12 – Технологическая схема производства серной кислоты из колчедана двойным контактированием ДК–ДА

    1. полая промывная башня;
    2. промывная башня с насадкой;
    3. увлажнительная башня;
    4. электрофильтры;
    5. сушильная башня;
    6. турбогазодувка;
    7. сборник 75% кислоты;
    8. сборник продукционной кислоты;
    9. теплообменники;
    10. контактный аппарат;
    11. олеумный абсорбер;
    12. моногидратныq абсорбер.
    13. моногидратныq абсорбер.
      Потоки продуктов:
      • I – охлажденная 98% кислота;
      • II – продукционная кислота на охлаждение;
      • III – охлажденный олеум или моногидрат;
      • IV – продукционный олеум на охлаждение.

    Производительность установки до 1500 т/сут. по моногидрату. Расходные коэффициенты (на 1 т моногидрата): колчедан 0,82 т, вода 50 м 3 , электроэнергия 82 кВт*ч.

    7.6. Товарные сорта серной кислоты

    Современная промышленность выпускает несколько сортов серной кислоты и олеума, различающихся концентрацией и чистотой (табл.7.4). Чтобы уменьшить возможность кристаллизации продуктов при перевозке и хранении, а также в самом производстве, установлены стандарты на товарные сорта, концентрации которых отвечают эвтектическим составам с наиболее низкими температурами кристаллизации.

    При определении технико–экономических показателей сернокислотного производства расчеты производимой продукции ведутся, обычно, на 100% серную кислоту (моногидрат). Для пересчета массы олеума на массу моногидрата используется формула

    Таблица 7.4 – Товарные сорта серной кислоты и олеума

    Пример решения задачи

    Составить материальный баланс сушильного отделения обжигового газа. Объём обжигового газа V м 3 . Состав обжигового газа (% об): SO2 – a, O2 – b, N2 – 79. Водяных паров в газе 138 м3 или 110,9 кг. Газ разбавляется воздухом до 7,5% об. SO2. Водяные пары поглощаются серной кислотой с массовой долей ω1 = 94%. Кислота разбавляется до массовой доли ω2 = 93,5%. Уходящий из сушильного отделения газ содержит 0,2 г/м3 водяных паров. М SO2 = 64 г/моль, М О2 = 32 г/моль, М N2 =28 г/моль.

    Исходные данные

    V обж.газа = 1000 м 3 ; а – 9,6 % (об.) b – 11,4 % (об.)

    Решение

    Рассчитаем состав сухого обжигового газа:

    V SO 2 = a∙ V обж.газа /100 = 9.6 ∙1000/100 = 276,38 м 3 , или m SO 2 = V SO 2 ∙ М SO 2 /22.4 =789,66м 3 .

    Аналогичным образом рассчитывают объём и массу кислорода и азота, входящих в состав обжигового газа, и данные заносят в таблицу:

    Объем сухого газа после разбавления его воздухом

    Объем сухого воздуха, который нужно добавить к газу

    Принимаем относительную влажность воздуха равной 50% (0,5 долей единицы) и температуру воздуха 23◦С. Этой температуре соответствует давление насыщенного водяного пара Р=2786,4 Па (20,9 мм рт.ст.)

    Объем влаги, вносимой воздухом:

    Состав воздуха, добавленного к газу

    Общая масса влаги, вносимая газом и воздухом mH2O,общ. = 110,90 + 9,03 = 119,03 кг

    Масса влаги в газе, уходящем из сушильного отделения

    Масса влаги, поглощаемой кислотой

    mH2O,погл. = mH2O,общ. – mH2O,ух.= 119,93 – 0,74 = 119,19 кг

    Массу кислоты х, необходимой для осушки газа, вычисляем по уравнению баланса моногидрата в поступающей и уходящей кислоте:

    х ω1 H2SO4 = (х + mH2Oпогл.) = ω2 H2SO4

    0,94х = (х+119,19) 0,935

    0,94х – 0,935х = 111,44

    Объем кислоты (S = 1800 кг/м3)

    Исходя из практических данных принимаем, что 0,3% (об.) SO2 извлекается из газа, растворяясь в H2SO4. Масса растворившегося в кислоте оксида серы (IV) SO2 составляет

    mSO2,раств. = VSO2 0,003 = 276,38 0.003 = 0,83 м3 или 2,37 кг

    Выходящий из сушильного отделения газ содержит

    276,38 – 0,83 = 275,55

    2274,1 + 636,8 = 2911,21

    328,21 + 169,27 = 497,48

    Масса выходящей из сушильного отделения кислоты

    mH2SO4 вых. = х + mH2O погл.+ mSO2 раств. = 22288 + 119,19 + 2,37 = 22409,56

    Массовая доля H2SO4 в этой кислоте

    Материальный баланс процесса осушки обжигового газа

    27547,29

    27547,30