Самодельное зарядное для мобильного. Изготавливаем портативное зарядное устройство для мобильного телефона. Электрическая схема портативного блока питания

Количество мобильных средств связи, находящихся в активном пользовании, постоянно растет. К каждому из них идет зарядное устройство, поставляемое в комплекте. Однако далеко не все изделия выдерживают сроки, установленные производителями. Основные причины заключаются в низком качестве электрических сетей и самих устройств. Они часто ломаются и не всегда возможно быстро приобрести замену. В таких случаях требуется схема зарядного устройства для телефона, используя которую вполне возможно отремонтировать неисправный прибор или изготовить новый своими руками.

Основные неисправности зарядных устройств

Зарядное устройство считается наиболее слабым звеном, которым укомплектованы мобильные телефоны. Они часто выходят из строя из-за некачественных деталей, нестабильного сетевого напряжения или в результате обычных механических повреждений.

Наиболее простым и оптимальным вариантом считается приобретение нового прибора. Несмотря на различие производителей, общие схемы очень похожи друг на друга. По своей сути, это стандартный блокинг-генератор, выпрямляющий ток с помощью трансформатора. Зарядники могут отличаться конфигурацией разъема, у них могут быть разные схемы входных сетевых выпрямителей, выполненные в мостовом или однополупериодном варианте. Существуют различия в мелочах, не имеющих решающего значения.

Как показывает практика, основными неисправностями ЗУ являются следующие:

  • Пробой конденсатора, установленного за сетевым выпрямителем. В результате пробоя повреждается не только сам выпрямитель, но и постоянный резистор с низким сопротивлением, который просто сгорает. В подобных ситуациях резистор практически выполняет функции предохранителя.
  • Выход из строя транзистора. Как правило, многие схемы используют высоковольтные элементы повышенной мощности с маркировкой 13001 или 13003. Для ремонта можно воспользоваться изделием КТ940А отечественного производства.
  • Не запускается генерация из-за пробоя конденсатора. Выходное напряжение становится нестабильным, когда поврежденным оказывается стабилитрон.

Практически все корпуса зарядных устройств являются неразборными. Поэтому во многих случаях ремонт становится нецелесообразным и неэффективным. Гораздо проще воспользоваться готовым источником постоянного тока, подключив его к нужному кабелю и дополнив недостающими элементами.

Простая электронная схема

Основой многих современных зарядных устройств служат наиболее простые импульсные схемы блокинг-генераторов, содержащие всего лишь один высоковольтный транзистор. Они отличаются компактными размерами и способны выдавать требуемую мощность. Эти устройства совершенно безопасны в эксплуатации, поскольку любая неисправность ведет к полному отсутствию напряжения на выходе. Таким образом, исключается попадание в нагрузку высокого нестабилизированного напряжения.

Выпрямление переменного напряжения сети осуществляется диодом VD1. Некоторые схемы включают в себя целый диодный мост из 4-х элементов. Ограничение импульса тока в момент включения производится резистором R1, мощностью 0,25 Вт. В случае перегрузки он просто сгорает, предохраняя всю схему от выхода из строя.

Для сборки преобразователя используется обычная обратноходовая схема на основе транзистора VT1. Более стабильная работа обеспечивается резистором R2, запускающим генерацию в момент подачи питания. Дополнительная поддержка генерации происходит за счет конденсатора С1. Резистор R3 ограничивает базовый ток во время перегрузок и перепадов в сети.

Схема повышенной надежности

В данном случае входное напряжение выпрямляется за счет использования диодного моста VD1, конденсатора С1 и резистора, мощностью не ниже 0,5 Вт. В противном случае во время зарядки конденсатора при включении устройства, он может сгореть.

Конденсатор С1 должен обладать емкостью в микрофарадах, равной показателю мощности всего зарядника в ваттах. Основная схема преобразователя такая же, как и в предыдущем варианте, с транзистором VT1. Для ограничения тока используется эмиттер с датчиком тока на основе резистора R4, диода VD3 и транзистора VT2.

Данная схема зарядного устройства телефона ненамного сложнее предыдущей, но значительно эффективнее. Преобразователь может стабильно работать без каких-либо ограничений, несмотря на короткие замыкания и нагрузки. Транзистор VT1 защищен от выбросов ЭДС самоиндукции специальной цепочкой, состоящей из элементов VD4, C5, R6.

Необходимо ставить только высокочастотный диод, иначе схема вообще не будет работать. Данная цепочка может устанавливаться в любых аналогичных схемах. За счет нее корпус ключевого транзистора нагревается гораздо меньше, а срок службы всего преобразователя существенно увеличивается.

Выходное напряжение стабилизируется специальным элементом - стабилитроном DA1, установленным на выходе зарядки. Для задействован оптрон V01.

Ремонт зарядника своими руками

Обладая некоторыми знаниями электротехники и практическими навыками работы с инструментом, можно попытаться отремонтировать зарядное устройство для сотовых телефонов собственными силами.

В первую очередь нужно вскрыть корпус зарядника. Если он разборный, потребуется соответствующая отвертка. При неразборном варианте придется действовать острыми предметами, разделяя зарядку по линии стыка половинок. Как правило, неразборная конструкция свидетельствует о низком качестве зарядников.

После разборки осуществляется визуальный осмотр платы с целью обнаружения дефектов. Чаще всего неисправные места отмечены следами от сгорания резисторов, а сама плата в этих точках будет более темной. На механические повреждения указывают трещины на корпусе и даже на самой плате, а также отогнутые контакты. Вполне достаточно загнуть их на свое место в сторону платы, чтобы возобновить поступление сетевого напряжения.

Нередко шнур на выходе устройства оказывается оборванным. Разрывы возникают чаще всего возле основания или непосредственно у штекера. Дефект выявляется путем и замеров сопротивления.

Если видимые повреждения отсутствуют, транзистор выпаивается и прозванивается. Вместо неисправного элемента подойдут детали от сгоревших энергосберегающих ламп. Все остальные делали - резисторы, диоды и конденсаторы - проверяются таким же образом и при необходимости меняются на исправные.

В последнее время стали очень популярны портативные зарядные устройства для мобильных телефонов или по другому их называют Power Bank . Они продаются во многих магазинах, и мы без проблем можем их приобрести, но думаю многим радиолюбителям намного интереснее сделать самому портативное зарядное устройство для своего мобильного телефона. В данной статье будет показана простая схема зарядного устройства работающего от батареек типа АА.

Почти все устройства, что подзаряжаются через USB компьютера, такие как мобильные телефоны, MP3-плееры, камеры и многое другое можно будет заряжать от обычных батареек АА 1,5 вольт, при желании их можно заменить аккумуляторными батарейками.

Экспериментальная модель портативного зарядного устройства с защитой от перенапряжения:

Схема по которой необходимо собирать зарядное устройство:

Поскольку в схеме используются дискретные компоненты, в нее была включена система защиты от перенапряжения, на случай, если какой-либо элемент выйдет из строя. Как работает схема, будет рассказано ниже.

Основной компонент схемы это микросхема 7805 , которая представляет собой 5-вольтовый стабилизатор напряжения с максимальным выходным током в 1,5 ампера. Следовательно это зарядное будет отдавать максимум 1,5 А на зарядку вашего мобильного.

Сделаем небольшое отступление от темы. Недавно столкнулся с проблемой, нужно было помочь родственникам из Германии оформить визу, очереди в посольстве оказались на пару месяцев вперед и потом я наткнулся на сайт http://www.visardo.ru/ где визу сделали всего за неделю.

Стабилитрон в схеме обеспечивает выходное напряжение не более 5,6 вольт, а в случае, если выходное напряжение превысит 5,6 вольт, автоматически сработает защита отключающая питание микросхемы 7805.

Для надежности перед микросхемой можно установить 2А предохранитель, чтоб быть более уверенным, что зарядное отключится, когда произойдет перенапряжение.

Выход 7805 подключен к USB типа «мама» от которого вы и будете подзаряжать свой гаджет. В этой схеме мы использовали четыре батарейки типа АА по 1,5В и 1,5А.

Ну да, возможно это зарядное устройство будет больше тех, что продаются в магазинах и к нему необходимы батарейки, но как я сказал вначале гораздо интереснее сделать что-то своими руками , чем просто купить.

Приветствуем вас, уважаемые читатели. В сегодняшней статье поговорим об актуальной нынче технологии – беспроводной зарядке для телефонов. Наверняка вы слышали, как брендовые компании акцентирует на ней внимание, представляя очередное портативное устройство с его поддержкой. Не желая тратить «кровные», многие остаются со старым мобильником, не переставая мечтая опробовать беспроводную зарядку.

Беспроводная зарядка своими руками – очень простое и достаточно быстрое решение. Читайте инструкцию и смотрите видео. Интересно, да? Тогда давайте по порядку. Но обязательно почитайте совет в конце статьи!

Что-то новое? Нет, давно известное «старое»

Впервые увидев беспроводную зарядку, я подумал, что производители сделали прорыв, открыв какую-то новую технологию. Благо есть Интернет, который поведал мне правду. На самом деле, появления беспроводной передачи энергии стало возможным благодаря открытию закона Андре Мари Ампером, который доказал, что электрический ток производит магнитное поле.

А случилось это, на минуточку, почти 200 лет назад. В последующие годы ряд ученых подтвердили существование электромагнитных волн, а Никола Тесла посвятил годы своей жизни изучению возможности передачи энергии на расстоянии. Посредством электромагнитной индукции физик сумел на расстоянии зажечь лампу накаливания.

Стандарт Qi

Конечно же, беспроводная передача энергии была интересна многим сферам человеческой жизни, но долгое время не выходила за стены лабораторий. Уже в нынешнем столетии компании, которые занимаются разработкой потребительской электроники (планшеты, смартфоны), стали проявлять инициативы по созданию беспроводных зарядок. Огромный вклад внес Консорциум беспроводной электромагнитной энергии (Wireless Power Consortium), разработавший стандарт Qi («Ци») для малых токов.

Спецификация стандарта была бесплатна и доступна, поэтому очень скоро стала применяться в портативной технике. Спустя три года Qi обзавелся спецификацией для средних токов. Есть и другие стандарты, но они сложнее Qi , да и менее распространены. Совсем недавно, в 2015 году, ученые Вашингтонского университета выяснили, что энергия может передаваться посредством сетей Wi –Fi . Ждем, когда смартфон будет заряжаться, подключившись к роутеру.

Принцип работы беспроводной зарядки по стандарту Qi

Ну, уже из названия устройства становится понятно, что для передачи энергии гаджету не требуется подключения проводов. Принцип работы очень прост. Зарядное устройство получает встроенную катушку (медную), которая берет на себя роль создателя и передатчика электромагнитного поля уже на катушку-приемник, уложенной в смартфоне (может быть над батареей или задней крышкой). Электромагнитное излучение возникает в момент, когда мобильный телефон с приемником оказывается в непосредственной близости с передатчиком (обычно около 4 сантиметров). Затем за дело берутся конденсаторы и выпрямитель (маломощный полупроводниковый диод), которые и обеспечивают аккумулятор энергией.

Значит, я смогу сделать беспроводную зарядку своими руками?

Да, для этого даже не нужно особых познаний в электрике. Тем более что уже до нас энтузиасты провели подобные эксперименты, выложив подробные инструкции и схемы для сборки беспроводной зарядки своими руками. Если все нужные компоненты окажутся под руками, то создание простейшей беспроводной зарядки не займет и часа. Однако рекомендуем для начала потренироваться на старых «кнопочниках, а не бежать «изобретать» зарядку для новенького iPhone . Например, вы можете собрать такую штуку для своей Nokia , у которой отвалилось гнездо зарядки, реанимировав ее таким образом. Итак, приступим.

Инструкция: как сделать беспроводную зарядку для телефона своими руками

Весь процесс можно поделить на две части: изготовление передатчика и приемника. Первый компонент получится отдельным устройством, а второй будет установлен в телефон.

Схема беспроводной зарядки очень проста, состоит из двух катушек (передатчик и приемник), а также транзистора и резистора.

Устройство передатчика:
  1. Для начала берем оправу, диаметр которой должен быть 7-10 сантиметров, но можно и другой – на ваше усмотрение.
  2. Теперь потребуется медная проволока диаметром 0,5 мм. Ее-то мы и наматываем на оправу. Необходимо сделать 20 витков, затем сделать отвод и скрутить еще 20 витков в обратную сторону.
  3. Понадобится транзистор. Использовать можно любой, хоть полярный, хоть биполярный – особой разницы нет. Если есть прямой проводимости, то придется изменить полярность. Транзистор подключается к концу катушки и отводу.
  4. Скрепляем получившуюся конструкцию скотчем или другим типом изоляции. Дабы все выглядело «солидно», можно использовать коробки из под DVD или CD -диска. Некоторые умельцы даже заморачиваются, вырезая, так скажем, корпуса из дерева.
  5. Для обеспечения питания можно использовать стандартный адаптер питания напряжением на 5 Вольт, который подключается к контуру.
  6. Все, устройство, которое будет передавать электричество, готово.
Теперь переходим к изготовлению приемника:
  1. Если изготовление передатчика занимает считанные минуты, то с приемником придется попотеть. Для начала придется сделать катушку, но уже плоскую. Понадобится медная проволока, но диаметром поменьше – 0.3-0.4 мм. Потребуется сделать 25 витков. Для удобства советую воспользоваться какой-нибудь подкладкой, например куском пластика. Постепенно витки укрепляем при помощи суперклея, чтобы конструкция не развалилась – придется мотать заново. По окончании работы необходимо аккуратно оторвать приемник от пластмассы, на которой его сматывали.
  2. Теперь подключаем наш приемник к аккумулятору через высокочастотный кремниевый диод, например SS14. Катушка должна оказаться на верхней части батареи, ближе к крышке. Для стабилизации напряжения следует использовать конденсатор.
  3. Подключать приемник можно либо к разъему зарядки, либо напрямую к батарее. Последний вариант отлично подойдет пользователям, у которых «умер» порт подзарядки.
  4. Все, закрываем заднюю крышку, чтобы не сдвинуть катушку.

Для многих пользователей, я думаю, лишним не будет видео о том, как сделать своими руками беспроводную зарядку. Поэтому, вот, держите:

На этом беспроводное зарядное устройство, сделанное своими руками, готово. Для начала использования достаточно положить телефон на передатчик. К сегодняшнему дню в Сети скопился уже ни один десяток инструкций по сборке беспроводных зарядок. Принцип примерно одинаков, но энтузиасты продолжают совершенствовать это устройство, внося что-то свое. Правда, новичкам лучше потренироваться для начала на самом простом варианте, представленном в инструкции, чтобы не пришлось нести телефон в ремонт.

Подойдет для любого устройства

Самый главный плюс беспроводной зарядки, сделанной своими руками – возможность изготовить практически для любого устройства: смартфона, обычного телефона, фотоаппарата, радиоприемника и так далее. Принцип питания всех этих гаджетов похож, поэтому и зарядка происходит по одному сценарию.

Правда, настоятельно не рекомендую пытаться изготовить беспроводную зарядку своими руками для дорогих смартфонов. Во-первых, придется разбирать корпус, чтобы подключить катушку приемника, так как современные модели часто выполнены неразборными (не получится просто снять крышку). Во-вторых, рискуете, перепутав что-либо, испортить устройство, особенно это касается новичков. В-третьих, большинство современных смартфонов поддерживает беспроводную зарядку с завода или обеспечивается другими производителями.

Минусы беспроводной зарядки, сделанной своими руками

оно вам надо?

Плавно мы подошли к очень важному моменту – минусам самодельных беспроводных зарядок. Да, возможность сделать без лишних затрат интересное и полезное устройство – здорово, но не будем забывать о рисках, на которые вы идете.

  • Ошибки во время изготовления в лучшем случае приведут к тому, что беспроводная зарядка работать не будет, в худшем – работать не будет телефон.
  • Не рассчитывайте на то, что смартфон будет быстро заряжаться. Даже заводские беспроводные зарядки все еще отстают от обычных ЗУ по скорости зарядки, что уж говорить о сделанных своими руками.
  • Не думаю, что у каждого дома лежит моток проволоки, диод и пару транзисторов. Вам придется все это купить, потратив сумму, сопоставимую с той, что требуется для покупки готового, пусть и китайского, устройства.

Что можно добавить? Беспроводная зарядка своими руками – скорее способ наглядно посмотреть на принцип работы электромагнитного поля. Чтобы собрать действительно стоящее и красивое устройство, потребуется потратить немало времени, да и средств. Выгоднее заказать готовый комплект, не тратя время на обмотку контура. Конечно, если вы любитель создавать что-нибудь необычное своими руками, то обязательно займитесь разработкой «своего» беспроводного зарядного устройства.


Фото: Koolpad Qi

А что делать тем, кто не хочет тратить время на сборку беспроводной зарядки своими руками? Все просто – заказываем готовый комплект, который более-менее качественно уже собран на заводе. Стоимость, как правило, не превышает 300 рублей, а комплект уже включает и передатчик, и приемник. Продаются беспроводные зарядки в магазинах электроники, но выгоднее заказывать с китайских интернет-магазинов.

Заметьте, что многие современные смартфоны оснащаются производителем ресивером (приемником). Поэтому владельцам этих моделей не нужно ничего докупать (в исключительных случаях продавцы могут не включить док-станцию (передатчик) в комплект). Список таких устройств довольно обширный:

  • Samsung (Note 5, S6 / S6 Duos и последующие модели)
  • Google Nexus 4/5/6/7
  • LG G3 и новые флагманы
  • Blackberry 8900
  • Nokia Lumia (810-930)
  • Yotaphone 2

В список попали самые распространенные модели, но далеко не все. К тому же регулярно он дополняется новыми устройствами. Чтобы понять, поддерживает ли ваш смартфон беспроводную зарядку, найдите обозначение «Qi » в характеристиках модели. Информация также обязана присутствовать на сайте производителя.

Мой смартфон не получил поддержки беспроводной зарядки

Если ваше устройство не получило встроенный ресивер, не спешите расстраиваться – китайские «друзья» позаботились о пользователях, выпустив как специальные для определенных моделей, так и универсальные приемники. Про первый тип, думаю, все понятно. Обычно, на них указывается, для какой модели смартфона предназначен. А вот второй вид ресиверов более интересен. Подобные приемники не привязаны к определенному смартфону, поэтому могут быть установлены почти в любой. Однако следует учитывать, что и универсальные приемники делятся на несколько классов:

  • Пленка со специальными контактами. Крепится под крышку телефона, не влияя на функциональность. Устройство должно иметь контакты около аккумулятора для ее установки. Главный плюс – остается свободным гнездо зарядки.
  • Apple-ресивер. Этот тип предназначен для устройств «яблочной» компании с разъемом Lightning, то есть всех актуальных моделей.
  • Android -ресивер. Предназначен для смартфонов с microUSB -разъемом. Так как Android -смартфонов в изобилии, а производитель как хочет (и куда хочет) выносит гнездо зарядки, то следует смотреть по конкретной модели. Как правило, microUSB располагается на нижнем или верхнем торце, имеет тип «А» (разъем в виде правильной трапеции, если смотреть на смартфон экраном кверху), «В» (неправильная трапеция) или «С» (овальный).

Док-станция (передатчик) особой роли не играет – можно использовать даже не из одного комплекта или совершенно другой формы. Поэтому ресивер и площадку для зарядки можно покупать по отдельности, что поможет еще немного сэкономить.

Помимо ресиверов, которые необходимо крепить на крышку или прятать под нее, в продаже имеются чехлы со встроенным приемником. Конечно же, они не универсальны, поэтому для каждого смартфона не подберешь. Да и выглядят они не самым лучшим образом. Как бы то ни было, многих все же может заинтересовать такой вид.

Модели беспроводных готовых зарядок

Итак, мы подошли к покупке беспроводного зарядного устройства на китайских интернет-сайтах. Можно, конечно, пойти в магазин электроники, где продаются более качественные модели, но придется существенно переплатить. Поэтому идем на один из магазинов в Интернете, где ищем что-то наподобие «универсальные беспроводные зарядки». Здесь вас встретит куча моделей. Дальше у вас несколько вариантов:

  • Покупка полного комплекта. В этом случае вы получаете и ресивер (приемник), и площадку для зарядки. При получении останется только все подключить.
  • Покупка деталей по отдельности. Возможно, у вас уже есть приемник, а док-станция сломалась (или наоборот). Чтобы не тратить деньги, можно заказать только необходимое.
  • Покупка компонентов для самостоятельной сборки. Некоторые продавцы предоставляют основу (катушки, платы, транзисторы и т.д.), чтобы пользователь сумел собрать, что душе угодно.

Популярных компаний не выделишь, так как продавцы их даже не указывают. А если и указан производитель, то наименование абсолютно не о чем не говорит (какая-то китайская фирма). Да и заморачиваться с поиском хорошего производителя глупо – стоимость беспроводной зарядки, как правило, смешная. Плюс ко всему, отзывы покупателей свидетельствуют, что процент брака довольно низкий.


Пролог


На идею постройки этой конструкции меня натолкнул полёт в самолёте Airbus A380, в котором под подлокотником каждого кресла имеется разъём USB, предназначенный для питания USB-совместимых устройств. Но, такая роскошь есть не во всех самолётах, а уж тем более её не найти в поездах и автобусах. А я уже давно мечтаю пересмотреть от начала до конца сериал «Друзья». Так почему бы не убить сразу двух зайцев – посмотреть сериал и скрасить время в пути.

Дополнительным стимулом к постройке данного девайса стало открытие .


Техническое задание

Портативое Зарядное Устройство (ЗУ) должно обеспечить следующие возможности.

  1. Время работы в автономном режиме под номинальной нагрузкой, не менее – 10 часов. Литий-ионные аккумуляторы большой ёмкости, как нельзя лучше подходят для этого.

  2. Автоматическое включение и отключение ЗУ в зависимости от наличия нагрузки.

  3. Автоматическое отключение ЗУ при критическом разряде аккумулятора.

  4. Возможность принудительного включения ЗУ при критическом разряде аккумулятора, в случае необходимости. Я полагаю, что в дороге может сложиться такая ситуация, когда аккумулятор портативного ЗУ уже разряжен до критического уровня, но необходимо подзарядить телефон для экстренного звонка. В этом случае, нужно предусмотреть кнопку «Экстренного включения», чтобы использовать всё ещё имеющуюся в аккумуляторе энергию.

  5. Возможность заряда аккумуляторов портативного ЗУ от сетевого зарядного устройства с интерфейсом Mini USB. Так как зарядное устройство от телефона всё равно всегда берут с собой в дорогу, то можно его использовать и для заряда аккумуляторов портативного БП перед обратной дорогой.

  6. Одновременный заряд аккумуляторов ЗУ и подзарядка мобильного телефона от одного и того же сетевого зарядного устройства. Так как сетевое зарядное устройство от мобильного телефона не может обеспечить достаточный ток для быстрого заряда аккумулятора портативного ЗУ, то заряд может растянуться на сутки и более. Поэтому, должна быть возможность подключить телефон на заряд прямо во время заряда батареи портативного БП.

Исходя из этого технического задания, было построено портативное ЗУ на литий-ионных аккумуляторах.

Блок схема


Портативное ЗУ состоит из следующих узлов.

  1. Преобразователь 5 → 14 Вольт.
  2. Компаратор, отключающий преобразователь заряда при достижении напряжения на батарее литий-ионных аккумуляторов 12,8 Вольт.
  3. Индикатор заряда – светодиод.
  4. Преобразователь 12,6 → 5 Вольт.
  5. Компаратор 7,5 Вольт, отключающий ЗУ при глубоком разряде батареи.
  6. Таймер, определяющий время работы преобразователя при критическом разряде батареи.
  7. Индикатор работы преобразователя 12,6 → 5 Вольт – светодиод.

Импульсный преобразователь напряжения MC34063


Долго выбирать драйвер для преобразователя напряжения не пришлось, так как выбирать то было особенно не из чего. На местном радиорынке по разумной цене (0,4$) я нашёл только популярную микросхему MC34063. Сразу купил парочку, чтобы выяснить, возможно ли как-либо принудительно отключить преобразователь, так как в даташите на данный чип такая функция не предусмотрена. Оказалось, что сделать это возможно, если подать на вывод 3, предназначенный для подключения частотозадающей цепи, напряжение питания.

На картинке типовая схема понижающего импульсного преобразователя. Красным отмечена цепь принудительного отключения, которая может понадобиться для автоматизации.

В принципе, собрав такую схему, уже можно запитать телефон или плеер, если, например, питание будет осуществляться от обычных элементов питания (батареек).


Я не буду подробно описывать работу этой микросхемы, но из «Дополнительных материалов» вы можете скачать и подробное описание на русском языке, и небольшую портативную программу для быстрого расчёта элементов повышающего или понижающего преобразователя, собранного на этой микросхеме.

Узлы управления зарядом и разрядом литий-ионной батареи

При использовании литий-ионных батарей, желательно ограничивать их разряд и заряд. Я для этой целей использовал компараторы на основе копеечных микросхем КМОП. Микросхемы эти крайне экономичны, так как работают на микротоках. На входе у них стоят полевые транзисторы с изолированным затвором, что даёт возможность применить микротоковый же Источник Опорного Напряжения (ИОН). Где взять такой источник я не знаю, поэтому воспользовался тем обстоятельством, что в режиме микротоков, напряжение стабилизации обычных стабилитронов снижается. Это позволяет управлять напряжением стабилизации в некоторых пределах. Так как это не задокументированное включение стабилитрона, то, возможно, для обеспечения определённого тока стабилизации, стабилитрон придётся подобрать.

Чтобы обеспечить ток стабилизации, скажем, 10-20 мкА, сопротивление балласта должно быть в районе 1-2 МОм. Но, при подгонке напряжения стабилизации, сопротивления балластного резистора может оказаться, либо слишком маленьким (несколько килоом), либо слишком большим (десятки мегаом). Вот тогда придётся подобрать не только сопротивление балластного резистора, но и экземпляр стабилитрона.


Переключение цифровой КМОП микросхемы происходит тогда, когда уровень входного сигнала достигает половины напряжения питания. Поэтому, если запитать ИОН и микросхему от источника, напряжение которого требуется измерить, то на выходе схемы можно получить сигнал управления. Ну, а этот самый сигнал управления и можно подать на третий вывод микросхемы MC34063.

На чертеже изображена схема компаратора на двух элементах микросхемы К561ЛА7.

Резистор R1 определяет величину опорного напряжения, а резисторы R2 и R3 гистерезис компаратора.


Узел включения и идентификации зарядного устройства

Чтобы телефон или плеер начал заряжаться от разъёма USB, ему нужно дать понять, что это разъём USB, а не какой-то суррогат. Для этого можно подать на контакт «-D» положительный потенциал. Во всяком случае, для Blackberry и iPod-а этого достаточно. Но, моё фирменное зарядное устройство подаёт положительный потенциал ещё и на контакт «+D», поэтому я поступил точно так же.


Другое назначение этого узла – управление включением и выключением преобразователя 12,6 → 5 Вольт при подключении нагрузки. Эту функцию выполняют транзисторы VT2 и VT3.


В конструкции портативного ЗУ предусмотрен и механический выключатель питания, но его назначение скорее соответствует "выключателю массы" АКБ в автомобиле.

Электрическая схема портативного блока питания

На рисунке представлена схема мобильного блока питания.


C1, C3 = 1000µF

C2, C6, C10, C11, C13 = 0,1µF

C14 = 20µF (танталовый)

IC1, IC2 – MC34063


DD1 = К176ЛА7 R3, R12 = 1k R27 = 44M
DD2 = К561ЛЕ5 R4, R7 = 300k R28 = 3k
FU = 1A R5 = 30k VD1, VD2 = 1N5819
HL1 = Green R6 = 0,2Ом VD3, VD6 = КД510А
HL2 = Red R8, R15, R23, R29 = 100k VT1, VT2, VT3 = КТ3107
L1 = 50mkH R10, R11, R13, R26 = 1М VT4 = КТ3102
L2 = 100mkH R16, R24 = 22М Подбираются
R0, R21 = 10k R17, R19, R25 = 15k R14* = 2М
R1 = 180Ом R18 = 5,1М R22* = 510k
R2 = 0,3Ом R20 = 680Ом VD4*, VD5* = КС168А

Назначение узлов схемы.

IC1 – повышающий преобразователь напряжения 5 → 14 Вольт, который служит для заряда встроенной аккумуляторной батареи. Преобразователь ограничивает входной ток на уровне 0,7 Ампера.

DD1.1, DD1.2 – компаратор заряда батареи. Прерывает заряд по достижению 12,8 Вольт на батарее.

DD1.3, DD1.4 – генератор индикации. Заставляет мигать светодиод во время заряда. Индикация сделана по аналогии с зарядными устройствами Nikon. Пока идёт заряд, светодиод мигает. Заряд окончен – светодиод горит постоянно.

IC2 – понижающий преобразователь 12,6 → 5 Вольт. Ограничивает выходной ток на уровне 0,7 Ампера.

DD2.1, DD2.2 – компаратор разряда батареи. Прерывает разряд батареи при снижении напряжения до 7,5 Вольт.

DD2.3, DD2.4 – таймер экстренного включения преобразователя. Включает преобразователь на 12 минут, даже если напряжение на батарее упало до 7,5 Вольт.


Тут может возникнуть вопрос, почему выбрано такое низкое пороговое напряжение, если некоторые производители не рекомендуют допускать его снижение ниже 3,0 и даже 3,2 Вольта на банке?

Я рассуждал так. Путешествия случаются не так часто, как этого бы хотелось, поэтому батарее вряд ли придётся пережить много циклов заряда-разряда. Между тем, в некоторых источниках, описывающих работу литий-ионных батарей, напряжение 2,5 Вольта как раз называют критическим.

Но, Вы можете ограничить предельный разряд более высоким уровнем напряжения, если предполагается часто использовать подобное зарядное устройство.

Конструкция и детали

Выражаю благодарность Сергею Соколову за помощь в поиске компонентов конструкции!


Печатные платы (ПП) изготовлены из фольгированного стеклотекстолита толщиной 1мм. Размеры ПП выбраны исходя из размеров приобретённого корпуса.


Все элементы схемы, кроме аккумуляторной батареи, размещены на двух печатных платах. Причём на меньшей расположен только разъём Mini USB для подключения внешнего зарядного устройства.



Узлы БП были помещены в стандартный полистироловый корпус Z-34. Это самая дорогая деталь конструкции, за которую пришлось выложить 2,5$.


Выключатель питания поз.2 и кнопка принудительного включения поз.3 спрятаны заподлицо с внешней поверхностью корпуса, во избежание случайного нажатия.

Разъём Mini USB выведен на заднюю стенку корпуса, а разъём USB поз. 4 вместе с индикаторами поз. 5 и поз.6 на переднюю.


Размер печатных плат рассчитан так, чтобы зафиксировать аккумуляторы в корпусе портативного БП. Между аккумуляторами и другими элементами конструкции вставлена прокладка из электрокартона толщиной 0,5мм, согнутая в виде коробки.


This movie requires Flash Player 9

А это портативный БП в собранном виде. Потяните изображение мышкой, чтобы рассмотреть БП с разных сторон.


Настройка

Настройка портативного зарядного устройства свелась к подбору экземпляров стабилитронов и сопротивлений балластных резисторов для каждого из двух компараторов.



Как это работает? Видеоиллюстрация.

В трёхминутном видеоролике показано, как работает эта самоделка и что находится внутри. Формат видео – Full HD.


Создание своими руками солнечной USB зарядки для телефона — один из самых интересных и полезных проектов на . Сделать самодельное зарядное устройство не слишком сложно — необходимые компоненты не очень дорогие и их легко достать. Солнечные зарядные USB устройства идеально подходят для зарядки небольших устройств, например, телефона.


Слабым местом всех самодельных солнечных зарядок являются аккумуляторы. Большинство собираются на базе стандартных никель-металл-гидридных аккумуляторов — дешёвых, доступных и безопасных в эксплуатации. Но к сожалению у NiMH аккумуляторов слишком низкие напряжение и ёмкость, чтобы их можно было серьёзно рассматривать в качестве , энергопотребление которых с каждым годом только растёт.


Например, аккумулятор iPhone 4 на 2000 мА*ч ещё можно полностью перезарядить от самодельной солнечной зарядки с двумя или четырьмя аккумуляторами АА, но вот iPad 2 оснащён аккумулятором на 6000 мА*ч, который уже не так просто перезарядить с помощью подобного зарядного устройства.


Решением данной проблемы является замена никель-металл-гидридных аккумуляторов на литиевые.


Из этой инструкции вы узнаете, как своими руками сделать солнечную USB зарядку с литиевым аккумулятором. Во-первых, по сравнению с это самодельное зарядное устройство обойдётся вам очень дёшево. Во-вторых, собрать его очень просто. И самое главное — эта литиевая USB зарядка безопасна при эксплуатации.

Шаг 1: Необходимые компоненты для сборки солнечной USB зарядки.


Электронные компоненты:

  • Солнечная батарея на 5 В или выше
  • Литий-ионный аккумулятор на 3,7 В
  • Контроллер зарядки литий-ионного аккумулятора
  • Повышающая USB схема постоянного тока
  • Разъём 2,5 мм с креплением на панель
  • Разъём 2,5 мм с проводом
  • Диод 1N4001
  • Провод

Конструкционные материалы:

  • Изолента
  • Термоусадочные трубки
  • Двухсторонняя лента из пеноматериала
  • Припой
  • Жестяная коробка (или другой корпус)

Инструменты:

  • Паяльник
  • Пистолет для склеивания горячим клеем
  • Дрель
  • Дремель (не обязателен, но желателен)
  • Кусачки
  • Инструмент для зачистки проводов
  • Помощь друга

В этом руководстве рассказывается как сделать зарядное устройство для телефона на солнечной энергии. Вы можете отказаться от использования солнечных батарей и ограничиться только изготовлением обычной USB зарядки на литий-ионных аккумуляторах.


Большинство компонентов для этого проекта можно купить в интернет магазинах электроники, но повышающую USB схему постоянного тока и контроллер заряда литий-ионного аккумулятора найти будет не так просто. Далее в этом руководстве я расскажу, где можно достать большинство необходимых компонентов и для чего каждый из них нужен. Исходя из этого вы сами решите какой вариант вам лучше всего подходит.


Шаг 2: Преимущества зарядных устройств с литиевыми аккумуляторами.


Может быть вы не догадываетесь, но скорей всего литий-ионный аккумулятор прямо сейчас лежит у вас в кармане или на столе, а может и в вашем кошельке или . В большинстве современных электронных устройств используются литий-ионные аккумуляторы, характеризующиеся большой ёмкостью и напряжением. Их можно перезаряжать множество раз. Большинство аккумуляторов формата АА по химическому составу являются никель-металл-гидридными и не могут похвастаться высокими техническими характеристиками.

С химической точки зрения разница между стандартным никель-металл-гидридным аккумулятором АА и литий-ионным аккумулятором заключается в химических элементах, содержащихся внутри элемента питания. Если вы посмотрите на периодическую таблицу элементов Менделеева, то увидите, что литий находится в левом углу рядом с самыми химически активными элементами. А вот никель расположен в середине таблицы рядом с химически неактивными элементами. Литий обладает такой высокой химической активностью из-за того, что у него только один валентный электрон.


И как раз именно по этой причине на литий много нареканий — иногда он может выходить из-под контроля из-за своей высокой химической активности. Несколько лет назад компания Sony, лидер в производстве аккумуляторов для ноутбуков, изготовила партию некачественных аккумуляторов для ноутбуков, некоторые из которых самопроизвольно возгорались.

Именно поэтому при работе с литий-ионными аккумуляторами мы должны придерживаться определенных мер предосторожности — очень точно поддерживать напряжение во время зарядки. В этой инструкции используются аккумуляторы на 3,7 В, которые требуют заряжающего напряжения 4,2 В. При превышении или уменьшении этого напряжения химическая реакция может выйти из-под контроля со всеми вытекающими последствиями.

Вот почему при работе с литиевыми батареями необходимо проявлять предельную осторожность. Если обращаться с ними осторожно, то они достаточно безопасны. Но если вы будете делать с ними недопустимые вещи, то это может привести к большим неприятностям. Поэтому их следует эксплуатировать только строго по инструкции.

Шаг 3: Выбор контроллера заряда литий-ионного аккумулятора.


Из-за высокой химической реактивности литиевых аккумуляторов вы должны быть на сто процентов уверены, что схема контроля напряжения заряда вас не подведёт.

Хотя можно изготовить собственную схему контроля напряжения, но лучше просто купить уже готовую схему, в работоспособности которой вы будете уверены. На выбор доступны несколько схем контроля заряда.

На данный момент Adafruit выпускает уже второе поколение контроллеров заряда для литиевых аккумуляторов с несколькими доступными значениями входящего напряжения. Это весьма неплохие контроллеры, но у них слишком большой размер. Вряд ли на их базе получится собрать компактное зарядное устройство.

В интернете можно купить небольшие модули контроллеров зарядки литиевых аккумуляторов, которые и используются в данном руководстве. На базе этих контроллеров я также собрал множество других . Они мне нравятся за компактность, простоту и наличие светодиодной индикации заряда аккумулятора. Как и в случае с Adafruit, при отсутствии солнца литиевый аккумулятор можно зарядить через USB порт контроллера. Возможность зарядки через USB порт является крайне полезной опцией для любого зарядного устройства на солнечных батареях.

Независимо от того, какой контроллер вы выбрали, вы должны знать как он работает и как его правильно эксплуатировать.

Шаг 4: USB порт.


Через USB порт можно заряжать большинство современных устройств. Это стандарт во всём мире. Почему бы просто не подключить USB порт напрямую к аккумулятору? Зачем нужна специальная схема для зарядки через USB?

Проблема заключается в том, что по стандарту USB напряжение составляет 5 В, а литий-ионные аккумуляторы, которые мы будем использовать в данном проекте, имеют напряжение всего 3,7 В. Поэтому нам придётся воспользоваться повышающей USB схемой постоянного тока, которая увеличивает напряжение до достаточного для зарядки различных устройств. В большинстве коммерческих и самодельных USB зарядок, наоборот, используются понижающие схемы, так как они собираются на базе аккумуляторов на 6 и 9 В. Схемы с понижением напряжения более сложные, поэтому в солнечных зарядных устройствах их лучше не применять.


Схема, которая применяется в данной инструкции, была выбрана в результате длительного тестирования различных вариантов. Она практически идентична схеме Minityboost Adafruit, но стоит дешевле.

Конечно вы можете купить онлайн недорогое зарядное USB устройство и разобрать его, но нам нужна схема, преобразующая 3 В (напряжение двух батареек АА) в 5 В (напряжение на USB). Разборка обычной или автомобильной USB зарядки ничего не даст, так как их схемы работают на понижение напряжения, а нам наоборот нужно повышать напряжение.

Кроме того следует учесть, что схема Mintyboost и используемая в проекте схема способны работать с гаджетами Apple, в отличии от большинства других зарядных USB устройств. Устройства от Apple проверяют информационные пины на USB, чтобы знать куда они подключены. Если гаджет Apple определит, что информационные пины не работают, то он откажется заряжаться. У большинства других гаджетов такая проверка отсутствует. Поверьте мне — я перепробовал множество дешёвых схем зарядки с интернет-аукциона eBay — ни от одной из них мне не удалось зарядить свой айфон. Вы же не хотите, чтобы от вашей самодельной USB зарядки нельзя было заряжать гаджеты Apple.

Шаг 5: Выбор аккумулятора.

Если вы немного погуглите, то обнаружите огромный разных размеров, ёмкостей, напряжений и стоимости. Поначалу во всём этом многообразии будет несложно запутаться.

Для нашего зарядного устройства мы будет использовать литий-полимерный (Li-Po) аккумулятор на 3,7 В, который очень напоминает аккумулятор для айпода или мобильного телефона. Действительно, нам нужен аккумулятор исключительно на 3,7 В, так как схема зарядки рассчитана именно на это напряжение.

То, что аккумулятор должен быть оснащён встроенной защитой от перезаряда и переразряда, даже не обсуждается. Обычно эта защита называется «PCB protection» («схема защиты»). Поищите по этим ключевым словам на интернет-аукционе eBay. Из себя она представляет всего лишь небольшую печатную плату с чипом, которая защищает аккумулятор от чрезмерного заряда и разряда.

При выборе литий-ионного аккумулятора смотрите не только на его ёмкость, но и на его физический размер, который преимущественно зависит от выбранного вами корпуса. В качестве корпуса у меня выступила жестяная коробка Altoids, так что я был ограничен в выборе аккумулятора. Я сначала думал купить аккумулятор на 4400 мА*ч, но из-за его больших размеров мне пришлось ограничиться аккумулятором на 2000 мА*ч.

Шаг 6: Подсоединение солнечной батареи.


Если вы не собираетесь делать зарядное устройство с возможностью подзарядки от солнца, то можете пропустить этот этап.

В этом руководстве используется солнечная батарея в жестком пластиковом корпусе на 5,5 В и 320 мА. Вам подойдет любая большая солнечная батарея. Для зарядного устройства лучше всего выбирать батарею, рассчитанную на напряжение 5 - 6 В.


Возьмите провод за кончик, разделите его на две части и немного зачистите концы. Провод с белой полоской отрицательный, а полностью чёрный провод — положительный.


Припаяйте провода к соответствующим контактам с обратной стороны солнечной батареи.

Закройте места пайки с помощью изоленты или горячего клея. Это защитит их и поможет снизить нагрузку на провода.

Шаг 7: Сверлим жестяную коробку или корпус.


Так как в качестве корпуса я использовал жестяную коробку Altoids, то мне пришлось немного поработать дрелью. Кроме дрели нам понадобится ещё и такой инструмент, как дремель.

Перед тем, как начать работу с жестяной коробкой, сложите в неё все компоненты, чтобы убедиться на практике, что она вам подходит. Продумайте, как лучше всего в ней разместить компоненты, и только потом сверлите. Места расположения компонентов можете обозначить маркером.


После обозначение мест можете приниматься за работу.

Вывести USB порт можно несколькими способами: сделать небольшой надрез прямо вверху на коробке или же сбоку на коробке просверлить отверстие соответствующего размера. Я решил сделать отверстие сбоку.


Сначала приложите USB порт к коробке и обозначьте его место. Внутри обозначенной области просверлите дрелью два или больше отверстий.


Зашлифуйте отверстие дремелем. Обязательно соблюдайте технику безопасности, чтобы не травмировать пальцы. Ни в коем случае не держите коробку в руках — зажмите её в тиски.

Просверлите отверстие диаметром 2,5 мм для USB порта. При необходимости расширьте его с помощью дремеля. Если вы не планируете устанавливать солнечную батарею, то в отверстии 2,5 мм нет необходимости!

Шаг 8: Подключение контроллера зарядки.


Одна из причин, по которой я выбрал этот компактный контроллер зарядки, это его высокая надёжность. У него четыре контактные площадки: две впереди рядом с портом mini-USB, куда подаётся постоянное напряжение (в нашем случае от солнечных батарей), и две сзади для аккумулятора.


Чтобы подключить разъём 2,5 мм к контроллеру зарядки, необходимо подпаять два проводка и диод от разъёма к контроллеру. Кроме того желательно воспользоваться термоусадочными трубками.


Зафиксируйте диод 1N4001, контроллер зарядки и разъём 2,5 мм. Расположите разъём перед собой. Если смотреть на него слева направо, то левый контакт будет отрицательным, средний — положительным, а правый вообще не используется.


Один конец проводка припаяйте к отрицательной ножке разъёма, а другой к отрицательному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Ещё один проводок припаяйте к ножке диода, рядом с которой нанесена метка. Припаивайте его как можно ближе к основанию диода, чтобы сэкономить побольше свободного места. Припаяйте другую сторону диода (без метки) к средней ножке разъёма. Опять же, постарайтесь припаять максимально близко к основанию диода. И в завершение подпаяйте проводок к положительному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Шаг 9: Подключение аккумулятора и USB схемы.


На данном этапе потребуется всего лишь подпаять четыре дополнительных контакта.


Нужно подсоединить аккумулятор и USB схему к плате контроллера зарядки.


Сначала отрежьте несколько проводков. Подпаяйте их к положительным и отрицательным контактам на USB схеме, которые расположены на нижней стороне платы.


После этого соедините вместе эти проводки с проводками, идущими от литий-ионного аккумулятора. Убедитесь, что вы соединили вместе отрицательные проводки и соединили вместе положительные проводки. Напоминаю, что красные провода у нас положительные, а чёрные — отрицательные.


После того, как вы скрутили проводки вместе, приварите их к контактам на аккумуляторе, которые находятся на обратной стороне платы контроллера зарядки. Перед пайкой проводки желательно продеть в отверстия.

Теперь можно поздравить вас — вы на 100% справились с электрической частью этого проекта и можете немного расслабиться.


На этом этапе неплохой идеей будет проверить работоспособность схемы. Так как все электрические компоненты подсоединены, то всё должно работать. Попробуйте зарядить айпод или любой другой гаджет, оснащённый USB портом. Устройство не будет заряжаться, если аккумулятор разряжен или неисправен. Кроме того поместите зарядное устройство на солнце и посмотрите будет ли заряжаться аккумулятор от солнечной батареи — при этом должен загореться маленький красный светодиод на плате контроллера зарядки. Также вы можете зарядить аккумулятор через mini-USB кабель.

Шаг 10: Электрическая изоляция всех компонентов.


Перед тем, как разместить все электронные компоненты в жестяной коробкой, мы должны быть уверены, что она не сможет стать причиной короткого замыкания. Если у вас пластиковый или деревянный корпус, то пропустите этот этап.

На дне и по бокам жестяной коробки наклейте несколько полос изоленты. Именно в этих местах будет находиться USB схема и контроллер зарядки. На фотографиях видно, что контроллер зарядки у меня остался незакреплённым.

Постарайтесь тщательно всё заизолировать, чтобы не произошло короткого замыкания. Перед тем, как наносить горячий клей или наматывать изоленту, убедитесь в прочности пайки.

Шаг 11: Размещение электронных компонентов в корпусе.


Так как 2,5 миллиметровый разъём необходимо закрепить с помощью болтов, то разместите его в первую очередь.



На моей USB схеме сбоку имелся переключатель. Если у вас такая же схема, то сначала проверьте работает ли переключатель, который нужен для включения и отключения «режима зарядки».


И наконец нужно закрепить аккумулятор. С этой целью лучше использовать не горячий клей, а несколько кусочков двустороннего скотча или изоленты.


Шаг 12: Эксплуатация самодельного зарядного устройства на солнечных батареях.


В завершение поговорим о правильной эксплуатации самодельной USB зарядки.

Заряжать аккумулятор можно через mini-USB порт или от солнца. Красный светодиод на плате контроллера зарядки указывает на процесс зарядки, а синий на полностью заряженный аккумулятор.