Расточной резец. Геометрические параметры резца Лабораторная работа исследование действия токарного резца

Лабораторная работа

«Изучение конструкции и геометрии токарных резцов»

I . Цель и содержание работы

Изучить конструкции и геометрические параметры резцов, инструментальные материалы. Практически ознакомится с приборами и с методикой измерения основных углов.

II . Типы токарных резцов

Резцыклассифицируются (рис. 1) по виду обработки, по направлению подачи, по конструкции головки, по роду материала рабочей части, по сечению тела резца и другие.

По виду обработки различают резцы:

Проходной – для точения плоских торцовых поверхностей – 3;

Расточные – для точения сквозных и глухих отверстий – 4, 5;

Отрезные – для разрезания заготовок на части и для протачивания кольцевых канавок – 6;

Резьбовые наружные и внутренние – для нарезания резьб – 7, 8;

Галтельные – для точения закруглений – 9;

Фасонные – для обтачивания фасонных поверхностей – 10.

По направлению подачи резцы делятся на правые, работающие с подачей справа на лево, и левые, работающие с подачи слева направо.

По конструкции головки: прямые, отогнутые, оттянутые и изогнутые.

По роду материала рабочей части: из быстрорежущей стали, с пластинами из твердого сплава, с пластинами из кинералокерамики, с кристаллами из алмазов и эльбога.

По сечению тела резца различают прямоугольные, квадратные и круглые.

Такие резцы могут быть цельные (головка и тела сделаны из одного материала), с приваренной встык головки.

Рис. 1 Типы токарных резцов

1-проходной прямой, 2-проходной отогнутый, 2а-проходной упорный, 3-подрезной,

4-расточной для сквозных отверстий, 5-расточной для глухих отверстий, 6-отрезной,

7-резбовой наружный, 8-резбовой внутренний, 9-галтельный, 10-фасонный.

III . Геометрия токарных резцов

Токарный резец состоит из тела (стержень), служащего для закрепления резца в резцедержателе и головки (рабочей части), предназначенной для осуществления процесса резания. На головке резца различают (рис. 2) – переднюю 1, главную заднюю 2, вспомогательную заднюю 3, опорную 4 и боковые поверхности 5 (ГОСТ 25762–83).

Пересечения передней и главной задней поверхностей образует главную режущую кромку 6, пересечение передней и вспомогательную режущую кромку 7, место сопряжения главной и вспомогательной режущих кромок образует вершину резца 8.

2

IV . Приборы для измерения углов резца и техника измерения

Для измерения углов α и γ в главной секущей плоскости, а также угла главной режущей кромки λ в плоскости, перпендикулярной основной, может быть использован настольный угломер. Основные части угломера: плита, колонка, кронштейн, стопорный винт, сектор с лимбом, поворотный шаблон с рабочими кромками и указателем.

Например, для измерения переднего угла γ токарный резец устанавливается нижним основанием на плиту угломера, резец и сектор с лимбом разворачивают относительно друг друга так, чтобы сектор с лимбом стал перпендикулярно проекции главной режущей кромки на основную плоскость. Шаблон поворачивается до соприкосновения с передней поверхностью резца. При этом указатель покажет значения угла γ. Аналогично измеряются углы α и λ показана на рис. 3.

Угол λ может быть режущей кромкой резца.


Рис. 3 Схема измерения главного переднего угла на настольном угломере

1-плита, 2-колонка, 3-кронштейн, 4-опорный винт, 5-сектор с лимбой, 6-поворотный шаблон,

7-токарный резец.

В главной секущей плоскости рассматривается следующие углы:

а) главный задний угол α – угол между главной задней поверхностью резца и плоскостью резания;

б) угол заострения β – угол между передней и главной задней поверхностью резца.

в) передний угол γ – угол между передней поверхностью лезвия и основной плоскостью. Угол γ может быть положительным, отрицательным и равным 0

Для измерения этих же углов используется настольный угломер, представленный на рис. 4.

Прибор состоит из основания I и стойки 2, на которой устанавливается и закрепляется в нужном положении державка 3 со шкалой 4 и указателем 5, имеющим одну измерительную площадку. Шкала 4 имеет деления от 0 до 90, в оба стороны. Схема измерения угла φ показана на рис. 4

5
4
3

Рис. 4 Схема настольного угломера для измерения углов в плане токарного резца

1-основание, 2-стойка, 3-державка, 4-шкала, 5-указатель, 6-резец, 7-прижимная планка,

8-стопорный винт.

Порядок выполнения работы

Вычертить схему обработки детали изучаемой резцами, с указанием обрабатываемой и обработанной поверхностей, поверхности резания, главную и вспомогательную режущие кромки, направление главного движения и движения подачи резца, (стрелками измерить углы резца, используя универсальные и настольные угломеры). Результаты измерений занести в таблицу.

Вычертить эскиз резца по варианту, в двух проекциях с необходимым количеством сечений и видов, с указанием всех элементов, поверхностей и углов, а также материала режущей части с расшифровкой.

Проходной отогнутый, марка резца Т15К6

Наиболее прочные с хорошим сопротивлением используется для обработки чугунов и их сплавов не металлических материалов. Т5К6, Т14К8, Т15К6, Т30К4 и другие менее прочны и более износа стойки, чем сплавы 1-ой группы и вязких металлов и сплавов.

ТК – титановольфрамовые сплавы, спекаемые из карбида вольфрама, карбида титана и кобальта. Сплавы группы ТК применяются для обработки конструкционных сталей. Они обладают высокими износо- и теплостойкостью, но более хрупкие, чем сплавы ВК (вольфрамовые, однокарбидные). Для изготовления режущих инструментов твёрдые сплавы поставляются в виде пластинок определённых формах и размеров. Твердые сплавы в форме пластинок соединяют с крепежной частью пайкой или с помощью специальных высоко температурных клеев. Многогранные твердо сплавные пластины закрепляют прихватами, винтами, клиньями.

При изготовлении режущих инструментов используют минеральную керамику, представляющую собой кристаллический оксид алюминия (Аl2 О3). Широкое распространение получила минеральная керамика марки ЦМ-332. Этот материал так же, как и твердые сплавы, получают спеканием. Технологический процесс изготовления минералокерамики предусматривает при спекании в керамику добавлять 0,5… 1% оксида магния (МgО), который, вступая в реакцию с оксидом алюминия, образует прочное цементирующее вещество. При прессовании керамических пластинок тех же форм и размеров, что и пластинки твердых сплавов, в исходную шихту добавляют пластификатор – 5%-ный раствор каучука в бензине.

В результате спекания минералокерамика становится поликристаллическим телом, которое состоит из мельчайших кристаллов корунда и межкристаллитной прослойки в виде аморфной стекловидной массы. Минералокерамика является дешевым и доступным инструментальным материалом, так как не содержит дефицитных и дорогих элементов, являющихся основой инструментальных сталей и твердых сплавов.

Кроме того, минералокерамика обладает высокой твердостью и исключительно высокой теплостойкостью. По теплостойкости минеральная керамика превосходит все распространенные инструментальные материалы, что позволяет минералокерамическому инструменту работать со скоростями резания, значительно превышающими скорости резания твердосплавных инструментов, и что является основным достоинством минеральной керамики. Она в меньшей степени склонна к адгезии (слипанию) с обрабатываемым материалом в отличие от других инструментальных материалов.

Вместе с указанными достоинствами минералокерамики она имеет недостатки, ограничивающие ее применение: пониженную прочность на изгиб, низкую ударную вязкость, исключительно низкую сопротивляемость циклическому изменению тепловой нагрузки. В результате этого при прерывистом резании на контактных поверхностях инструмента возникают температурные усталостные трещины, являющиеся причиной преждевременного выхода инструмента из строя.

Низкая прочность на изгиб и высокая хрупкость минеральной керамики позволяют использовать ее в инструментах при обработке мягких цветных металлов, а при обработке стали и чугуна применение минералокерамики ограничивается чистовым непрерывным точением с малыми сечениями срезаемого слоя при отсутствии толчков и ударов. Попытки повысить изгибную прочность минералокерамики введением в ее состав упрочняющих добавок: металлов (молибдена, вольфрама, титана) или сложных карбидов этих элементов – приводят к повышению прочности на изгиб минералокерамики, но одновременно снижают ее тепло- и износостойкость.

Режущий инструмент оснащается пластиками из минералокерамики определенных формы и размеров.

Пластинки минералокерамики прикрепляют к корпусу инструментов припаиванием, приклеиванием и механическим путем.

Номенклатура инструментов, изготовляемых из минералокерамики, такая же, как и номенклатура инструментов из твердых сплавов.

Виды стружек

При резании металлов образуется стружка:

1. Сливная образуется при обработки пластичных материалов, при назначении, малых глубин и больших скоростей резания, а также больших подач и передних больших углов. С внутренней стороны стружка гладкая, блестящая, сплошная лента, с внутренней стороны она имеет пилообразные зазубрины.

2. Скалывания формируется в случае обработки материалов средней твёрдости и твёрдых при больших глубинах и малых скоростях резания, больших подачах и малых передних углах резца внутренняя сторона стружки гладкая стружка, внешняя ярко выраженные зазубрины.

3. Надлом получается при обработки хрупких материалов (чугун и др.) – это отдельные частицы металлов неправильной формы.

Марка станка 1И611. Сталь 3

При скорости вращения 630 об/мин и глубине резания 5 делений (1 мм) образуется сливная стружка. При скорости вращения 450 об/мин и глубине резания 20 делений (4 мм) образуется стружка скалыванием.

Лабораторная работа 6

Тема: Геометрические параметры токарных резцов.

Цель работы: приобрести практические навыки измерения углов токарных резцов.

Необходимое оборудование, инструменты и материалы:

    Универсальный угломер.

    Измерительные инструменты: линейка (металлическая, масштабная), штангенциркуль.

    Подставка или плита.

    Плакат "Способы измерения углов".

    Резцы: а) проходной, б) отрезной.

Пояснения к работе

Геометрические параметры ревущих инструментов оказывают существенное влияние на увеличение режимов резания, а, следовательно, на увеличение производительности труда, что является основной задачей, поставленной перед промышленностью решением КПСС и правительством. Для полного использования режущих свойств резца необходимо придать его ревущей части рациональную форму, которая получается заточкой резца, а следовательно, углами резца. Бели-чина углов определяется их измерением. Правильно выбранные геометрические размеры обеспечивают стойкость и производительность режущего инструмента.

Режущая часть резца выполняется в виде клина, как наивыгоднейшая форма, и в ней различают следующие углы (Рис. 1):

1. Главные, рассматриваемые в главной секущей плоскости:

 - главный передний угол (угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания и проходящей через главную режущую кромку).

 - задний главный угол (угол между касательной к главной задней поверхности резца в рассматриваемой точке режущей кромки и плоскостью резания, при плоской задней поверхности резца - угол между главной задней поверхностью резца и плоскостью резания).

 - угол заострения (угол между передней и главной заднее поверхностями резца).

 - угол резания (угол между передней поверхностью резца и плоскостью резания).

При положительном значении угла между углами существуют следующие зависимости:

 +  + = 90 ;  + = ; = 90 -

При отрицательном значении угла  угол  > 90 градусов.

2. Вспомогательные углы, рассматриваемые во вспомогательной секущей плоскости:

 1 – вспомогательный передний угол

 1 - вспомогательный задний угол.

3. Углы в плане:

 - главный угол в плане (угол между проекцией главной режущей кромки на основную плоскость и направлением подачи).

 1 - вспомогательный угол в плане (угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением подачи).

 - угол при вершине в плане (угол между проекциями режущих кромок на основную плоскость).

4. Угол наклона главной режущей кромки  (угол, заключенный между главной режущей кромки и линией, проведённой через вершину резца параллельно основной плоскости) Рис. 2.

Для измерения углов используются различной конструкции угломеры:

1. Универсальный угломер Семенова (Рис. 3).

2. Универсальный угломер (Ленинградский механический техникум)

3. Универсальный угломер Спиридовича.

4. Настольный угломер конструкции МИ 3.

Универсальный угломер Семенова предназначен для измерения наружных и внутренних углов, а также высот. Используется для измерения углов. Состоит из сектора, или основания 5, на котором нанесена основная градусная шкала - 6. По сектору перемещается пластина - 4 с нониусом, на котором с помощью державки - 3 закрепляется угольник - 2, связанный со съемной лекальной линейкой – 1.

Основная шкала угломера градуирована в пределах 0 - 130 град., но различными переустановками измерительных деталей достигайся измерение углов 0 - 320 град.. Точность отсчёта по нониусу составляет 2 -5 мин., а по градусной шкале 10 - 30 мин.. Метод измерения сводится к установке измеряемых поверхностей между подвижной линейкой сектора - 5 и подвижной лекальной линейкой № - 1 таким образом, чтобы образовался необходимый контакт, т.е. невидимый или видимый равномерный просвет.

Задание

На плиту или подставку установить токарный резец.

1. Линейкой измерить длину резца - l , а штангенциркулем сечение Н и В.

2. С помощью угломера определить углы -

3. Сделать эскизы сечений режущей чисти резцов.

4. Данные измерений занести в таблицу:

Наименование резца

 1

 1

 1

5. Сделать выводы, т.е. определить, для каких работ предназначены данные резцы.

6. Дать ответы на тестовые задания.

Форма отчета

Отчет по лабораторной работе оформляется на листе (формат А4) и должен содержать: наименование и цель работы, указание об оборудовании, инструментах и материалах, эскизы измеряемых резцов, эскизы сечений режущей части резцов с буквенным обозначением углов, сводную таблицу всех измерений, назначение исследуемых резцов, выполнить тестовые задания.

Рис. 3Универсальный угломер Д. С. Семенова.

Тестовые задания

Выберите правильный ответ:

Угол, расположенный между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания, это угол –

  1. передний

    заостренный

4. угол резания

Выберите правильный ответ:

Угол, расположенный между передней поверхностью и задней поверхностями резца является

    передним углом

    задним углом

    углом заострения

4. углом резания

Выберите правильный ответ:

При увеличении переднего угла  угол резания  ...

1. уменьшается

2. увеличивается

3. остается неизменным

Выберите правильный ответ:

Сумма углов в плане  +  1 +  = ?

Выберите правильный ответ:

При заточке заднего угла  = 10°, переднего угла  = 10°, угол заострения  равен:

У
становите соответствие:

Углы: Ответ:

1. передний  -

2. заострения  -

3. угол резания  -

4. задний угол  -

Выберите правильный ответ:

Угол, расположенный между главной режущей кромкой и вспомогательной режущей кромкой на основную плоскость резца - это:

1. главный угол в плане

2. вспомогательный угол в плане

3. угол при вершине

Выберите правильный ответ:

Угол, расположенный между задней поверхностью резца и плоскостью резания это угол –

2. передний

3. заостренный

4. угол резания

Выберите правильный ответ:

Угол, расположенный между передней поверхностью и плоскостью резания, это угол –

1. передний

2. заострения

4. угол резания

Выберите правильный ответ:

При увеличении переднего и заднего угла угол заострения...

1. уменьшается

2. увеличивается

3. остается неизменным

Расточной резец широко применяется в машиностроении и производстве. Их используют для обработки сквозных и глухих отверстий на токарной группе станков. Резцы расточные токарные помогают достичь более точных результатов в работе, а также создают высокую частоту обработки. Инструментом последовательно снимаются слои металла, что помогает расширить обрабатываемое отверстие до нужных размеров. Благодаря точному оборудованию, результат можно регулировать в пределах десятых долей миллиметра. Если резец для расточки хорошо заточен и находится в исправном состоянии, то он может работать с различными металлами, так как он всегда должен быть более жестким, чем деталь. Для надежности, всегда требуется проверять его закрепление, так как неправильное положение может привести к поломке самого инструмента или браку обработки детали.

Основной упор в данном резце сделан на высокую производительность в работе. Как правило, расточной резец снимает относительно небольшие слои, которые помогают расширить отверстие, так что здесь важна скорость и точность, что в свою очередь отображается на геометрии изделия. Рабочая поверхность сделана клинообразной формы, так как это помогает лучше врезаться в слой материала и деформировать его, снимая стружку должной толщины. Постепенное скалывание верхнего слоя материала доводит заготовку до необходимого состояния. Действующим стандартом, по которому изготавливается резец расточной, является ГОСТ 18872-73, что предназначен для изделий из быстрорежущей стали, наименьший диаметр которых достигает 14 мм. Если же инструмент предназначается для глухих отверстий, диаметр которых составляет до 6 мм, то это уже будет ГОСТ 18873-72. Если расточной резец изготавливается из твердосплавного состава, то здесь будет актуальным ГОСТ 18882-73 для сквозных отверстий и ГОСТ 18883-72 – для глухих, соответственно.

фото:расточные токарные резцы по металлу

Виды расточных резцов

Расточной резец может быть выполнен в нескольких вариантах. Быстрорежущий вид служит для обработки различных легких материалов и соответствующих сплавов, куда можно отнести алюминий, фторопласт, текстолит и другие материалы.

Для более крепких и тяжелых составов применяются монолитные, резец расточной твердосплавный или со вставками пластин из твердых сплавов. Такие изделия уже могут работать с бронзой, сырой сталью, нержавейкой, калеными сортами стали и другими материалами.

Все эти разновидности в свою очередь разделяются и по виду державки, которая может быть квадратной или круглой. Помимо этого, есть еще разделение по назначению. Согласно выполняемым функциям выпускают расточной резец для глухих отверстий, которые применяется не только для обработки внутренних стенок отверстия, но и занимается проточкой дна, вместе с последующей его шлифовкой. Также встречается резец расточной проходной, который используется для сквозных отверстий. Он работает с деталями цилиндрической формы, или имеющими сквозные дырки.

Сейчас оказываются весьма популярной такая разновидность как расточной резец со сменными пластинками. Они имеют различные профили и формы, а главное, что в комплекте к ним идет набор запасных частей, которые могут использоваться для крепежа рабочих пластин и державок. Износившиеся пластины можно быстро заменить.

Основные размеры

Расточные резцы для токарных станков, которые предназначены для работы со сквозными и глухими отверстиями, изготовляются согласно определенным стандартам размеров.

Высота,мм Ширина,мм Длина,мм
16 16 140
16 16 170
20 20 140
20 20 170
20 20 200
25 25 200
25 25 240
32 25 280

Геометрические параметры расточного резца

Геометрия рабочей части изделия состоит из трех основных углов, которые в своей сумме всегда образуют 90 градусов. Сюда входит:

  • Главный задний угол, который образуется между плоскостью резания и задней поверхностью инструмента. Он уменьшает трение между деталью и задней поверхностью. Чем больше этот угол, тем меньше шероховатость поверхности, которая поддается обработке. Соответственно, чем тверже металл, тем меньше должен быть этот угол.
  • Угол заострения, который замеряется между передней и задней поверхностью инструмента. Он влияет на прочность изделия, так что чем он больше, тем надежнее будет расточной резец.
  • Главный передний, который замеряется между передней поверхностью инструмента и то плоскостью, которая располагается перпендикулярно от поверхности резания. С его помощью можно повлиять на размер деформации снимаемого слоя.

фото:геометрия расточного резца

Выбор расточного резца

Расточной резец выбирается согласно тому, с какими материалами он будет работать. В первую очередь – это тип, для глухих или наружных отверстий. Далее очень важно смотреть по материалу, который подвергается обработке. Если основной геометрический принцип у данной разновидности примерно одинаковый, то материалы изготовления будут различными.

«Совет профессионалов! Ни в коем случае не стоит использовать изделия из быстрорежущей стали для обработки нержавеющей стали, бронзы и изделий из каленых сортов металла. Это приведет к быстрому износу, так что здесь лучше применять только изделия из твердосплавных материалов»

Не стоит также забывать и о размерах, так как некоторые резцы просто физически не смогут проникнуть в отверстие. Для постоянной активной работы желательно иметь набор из нескольких изделий или выбрать вид со сменными пластинами. Для обработки глухих отверстий, специалисты подбираются изделия в два раза меньше по диаметру, чем обрабатываемое отверстие.

Режимы резания расточными резцами

Выбор режима резания во многом зависит от расточки резца, диаметра отверстия, вида материала и прочих факторов. В зависимости от диаметра обрабатываемого отверстия при работе со сквозными отверстиями, резец требуется устанавливать ниже или выше их центра. В то же время, при работе с глухими отверстиями, резец внутренний расточной ставится четко по центру, чтобы не было бобышек в торце.

Маркировка

Существует несколько основных марок резцов, отличных по размеру и составу. К примеру, Т15К6 – материал изготовления относится к титановольфрамовой твердосплавной группе с 15%-ным содержанием карбида титана и 6%-ным содержанием кобальта.

Производители

  • TaeguTec (Южная Корея);
  • УкрМетиз (Украина);
  • Киржачский инструментальный завод (Россия);
  • ЧИЗ (Украина);
  • Intertool (Китай).

Расточные упорные резцы:Видео

Цель работы: изучение типов, конструкции и геометрических параметров токарных резцов и приобретение навыков измерения их геометрических параметров.

Теоретические основы основные типы токарных резцов

Резец – это однолезвийный инструмент для обработки с поступательным или вращательным движением резания и возможностью подачи в любом направлении (ГОСТ 25761-83).

Токарные резцы являются наиболее распространенным и простым видом режущего инструмента. Под действием режущего инструмента обрабатываемая заготовка приобретает заданную конфигурацию, размеры и качественные характеристики поверхностного слоя.

При обработке резанием на обрабатываемой заготовке различают следующие поверхности (рис. 1):

Рис. 1. Поверхности обрабатываемой заготовки

обрабатываемую поверхность – поверхность, которая будет удалена (1 );

обработанную поверхность – поверхность, полученная после снятия стружки (2 );

поверхность резания – поверхность, образуемая на обрабатываемой заготовке непосредственно режущей кромкой резца (3 ).

Токарные резцы классифицируют по виду и характеру обработки, форме рабочей части, направлению подачи, материалу рабочей части, способу изготовления, сечению крепежной части, установке относительно заготовки.

По виду обработки различают проходные резцы, применяемые для наружного точения (прямые, отогнутые, упорные) (рис. 2, а, б, в ); подрезные (рис. 2, г ) – для подрезания торцов и обработки ступенчатых поверхностей; расточные (рис. 2, д ) – для растачивания отверстий, предварительно просверленных или полученных штамповкой или литьем; отрезные (рис. 2, е ) – для отрезки заготовок и точения прямоугольных канавок; резьбовые (рис. 1, ж ) – для нарезания резьбы; контурного точения (рис. 2, з ) – для работы на станках с копировальными устройствами и станках с ЧПУ; фасонные (рис. 2, и) – для выполнения фасонных работ.

Рис. 2. Типы токарных резцов:

а, б, в – проходные, соответственно прямой, отогнутый, упорный;

г – подрезной; д – расточной; е – отрезной; ж – резьбовой;

з – контурного точения; и – фасонный; Н – высота; В – ширина;

L – длина резца; l – длина рабочей части; d – диаметр крепежной части

По характеру обработки резцы бывают черновые и чистовые.

По форме рабочей части резцы могут быть прямые, отогнутые вправо или влево, оттянутые вверх или вниз и изогнутые.

По направлению продольной подачи резцы делят на правые и левые. Правые резцы работают справа налево (от задней бабки к передней), левые – в обратном направлении.

По материалу рабочей части резцы разделяют на резцы из быстрорежущей стали, с пластинками твердого сплава, режущей керамикой, со вставками из композитов и алмаза, а также непосредственно с кристаллами алмаза. Углеродистые и легированные инструментальные стали для изготовления токарных резцов применяют редко.

По способу изготовления резцы бывают цельные (головка и тело сделаны из одного материала), составные (с приваренной или припаянной рабочей частью), сборные (с механическим креплением пластин). Широко применяют резцы с механическим креплением сменных многогранных пластин (СМП), имеющих различную форму (трех-, четырех-, пяти-, шестигранных и т. п.) и предназначенных для разных типов резцов и условий резания. К их достоинствам относятся высокие механические свойства и быстрота смены пластины без потери установленного размера. При помощи твердосплавных пластин значительно проще получить необходимые геометрические параметры режущей части.

По сечению крепежной части резцы делят на стержневые, призматические и круглые (дисковые). Стержневые резцы в свою очередь могут иметь прямоугольное, квадратное и круглое сечения. Круглые и призматические резцы обычно бывают фасонные и резьбовые.

По установке относительно заготовки различают радиальные (наиболее часто применяемые) и тангенциальные резцы.

Рис. 3. Элементы токарного резца:

1 – рабочая часть; 2 – крепежная часть (стержень); 3 – вершина резца

Наиболее распространены стержневые резцы (рис. 3). Они состоят из рабочей части 1 , содержащей лезвие, и крепежной части (стержня) 2 , используемой для установки в резцедержателе станка.

На лезвии различают переднюю поверхность Аγ (по которой сходит стружка), главную Аα и вспомогательную Аα 1 задние поверхности (обращенные к заготовке), главную К и вспомогательную К 1 режущие кромки (образованные пересечением передней и задних поверхностей) и вершину резца 3 (в точке пересечения главной и вспомогательной режущих кромок).

Для определения числовых значений угловых параметров элементов лезвия принята прямоугольная система координат. Статическая система координат (ССК) с началом в рассматриваемой точке режущей кромки ориентирована относительно направления скорости главного движения резания (ГОСТ 25762–83).

Рис. 4. Геометрические параметры токарного резца

При определении углов резца используют следующие плоскости: основную Рν , резания Рп и рабочую Рs (рис. 4). Основная плоскость Рν проходит через точку режущей кромки перпендикулярно вектору скорости главного движения. В ней располагаются векторы движений продольной и поперечной подач.

Плоскость резания Рп – плоскость, касательная к главной режущей кромке в рассматриваемой точке и перпендикулярная основной плоскости. Вспомогательная плоскость резания проходит аналогично через вспомогательную режущую кромку.

Рабочая плоскость Рs образована векторами скорости главного движения и движения подачи и проходит через вершину резца.

Углы резца рассматривают в главной Рτ и вспомогательной Р´τ секущих плоскостях, перпендикулярных соответственно линиям пересечения главной и вспомогательной плоскостей резания с основной плоскостью.

В главной секущей плоскости Рτ рассматривают следующие углы: передний угол γ - угол между передней поверхностью, на которую сходит стружка, и основной плоскостью Рν . С увеличением переднего угла γ уменьшается работа резания и снижается шероховатость обработанной поверхности; угол заострения β - угол между передней и главной задней поверхностями резца, определяющий прочность режущей части; главный задний угол α - угол между главной задней поверхностью резца и плоскостью резания Рп .

Сумма углов α + β + γ = 90º . Сумму углов α и β называют углом резания и обозначают δ .

Во вспомогательной секущей плоскости Р´τ рассматривают вспомогательный задний угол α 1 . У отогнутых проходных резцов этот угол обычно равен главному заднему углу α .

Задние углы α и α 1 уменьшают трение между задними поверхностями инструмента и поверхностью обрабатываемой заготовки, что приводит к снижению силы резания и уменьшению износа резца, однако чрезмерное увеличение заднего угла приводит к ослаблению лезвия. При обработке стальных и чугунных деталей рекомендуется задние углы выполнять в пределах 6...12°.

В основной плоскости (при виде сверху на резец, установленный в суппорте токарного станка) рассматривают углы в плане.

Главный угол в плане φ – угол между проекциями на основную плоскость плоскости резания и рабочей плоскости. Главный угол в плане φ влияет на силы резания. При обработке деталей малой жесткости угол φ = 90º. В этом случае радиальная сила, вызывающая изгиб детали, минимальна.

В зависимости от условий работы принимают φ = 30...90°. При обработке на универсальных токарных станках чаще всего φ = 45°. У проходных, подрезных и большинства отрезных резцов φ = 90°. У резцов для растачивания глухих отверстий φ > 90°, а для растачивания сквозных отверстий φ = 45...60°.

Вспомогательный угол в плане φ 1 – угол между проекциями на основную плоскость вспомогательной плоскости резания и рабочей плоскости. Наиболее распространенный вспомогательный угол в плане φ 1 = 12...15°.

Угол вершины ε – угол между проекциями главной и вспомогательной плоскостей резания на основную плоскость.

Сумма углов φ + φ 1 + ε = 180º.

Угол наклона главной режущей кромки λ – угол в плоскости резания между главной режущей кромкой и основной плоскостью. Этот угол влияет на направление схода стружки. Угол λ считают положительным, когда вершина резца является низшей точкой режущей кромки (рекомендуется для черновой обработки, так как стружка сходит на обработанную поверхность); равным нулю, когда главная режущая кромка лежит в основной плоскости (стружка сходит на резец – принимается наиболее часто), и отрицательным, когда вершина является высшей точкой режущей кромки (стружка сходит на обрабатываемую поверхность – у резцов для чистовой обработки).

Отчёт по лабораторным работам по курсу «Основы теории резания и инструменты»

Министерство Высшего и Среднего Специального Образования Республики Узбекистан

Ташкентский Государственный Технический Университет

им. Абу Райхана Беруни

Механико-машиностроительный факультет

Кафедра «Технология машиностроения»

Отчёт по лабораторным работам

по курсу «Основы теории резания и инструменты»

Выполнил: ___________________

Студент гр. ___Валиев С.____

Принял: асс. Желтухин А.В.

Ташкент 2012 г.


Лабораторная работа № 1. Классификация токарных резцов…..

___

Лабораторная работа № 2. Геометрические параметры токарного резца……………………………………………………………….

Лабораторная работа № 3. Определение зависимости коэффициента усадки от режима резания………………………………….

Лабораторная работа № 4. Определение температуры резания методом естественной термопары при точении..………………………….

Лабораторная работа № 5. Определение зависимости износа токарного резца от времени его работы..…………………………………..

Лабораторная работа № 6. Определение зависимости стойкости токарного резца от скорости резания и подачи..………………

Цель работы: Изучить классификацию и виды токарных резцов.

Теоретическая часть

При работе на токарных станках применяют различные режущие инструменты: резцы, сверла, зенкеры, развертки, метчики, плашки, фасонный инструмент и др. Токарные резцы являются наиболее распространенным инструментом, они применяются для обработки плоскостей, цилиндрических и фасонных поверхностей, нарезания резьбы и т. д.

Резец (англ. tool bit) - режущий инструмент, предназначен для обработки деталей различных размеров, форм, точности и материалов.

Для достижения требуемых размеров, формы и точности изделия с заготовки снимаются (последовательно срезаются) слои материала при помощи резца. Жёстко закреплённые в станке резец и заготовка в результате относительного перемещения контактируют друг с другом, происходит врезание рабочего элемента резца в слой материала и последующее его срезание в виде стружки.

Рис.1. Основные элементы токарного резца.

Рабочий элемент резца представляет собой острую кромку (клин), который врезается в слой материала и деформирует его, после чего сжатый элемент материала скалывается и сдвигается передней поверхностью резца (поверхностью схода стружки). При дальнейшем продвижении резца процесс скалывания повторяется и из отдельных элементов образуется стружка. Вид стружки зависит от подачи станка, скорости вращения заготовки, материала заготовки, относительного расположения резца и заготовки, использования СОЖ (смазочно-охлаждающие жидкости) и других причин. Элементы резца показаны на рисунке 1.

Токарный проходной резец состоит из следующих основных элементов:


  1. Рабочая часть (головка);

  2. Стержень (державка) - служит для закрепления резца на станке.

Рабочую часть резца образуют:


  1. Передняя поверхность - поверхность, по которой сходит стружка в процессе резания.

  2. Главная задняя поверхность - поверхность, обращенная к поверхности резания заготовки.

  3. Вспомогательная задняя поверхность - поверхность, обращенная к обработанной поверхности заготовки.

  4. Главная режущая кромка - линия пересечения передней и главной задней поверхностей.

  5. Вспомогательная режущая кромка - линия пересечения передней и вспомогательной задней поверхностей.

  6. Вершина резца - точка пересечения главной и вспомогательной режущих кромок.

Резцы классифицируются:


  1. по виду обработки,

  2. по направлению подачи,

  3. по конструкции головки,

  4. по роду материала рабочей части,

  5. по сечению тела резца и другие.

По виду обработки различают резцы:


  • Проходной – для точения плоских торцовых поверхностей;

  • Расточные – для точения сквозных и глухих отверстий;

  • Отрезные – для разрезания заготовок на части и для протачивания кольцевых канавок;

  • Резьбовые наружные и внутренние – для нарезания резьб;

  • Галтельные – для точения закруглений;

  • Фасонные – для обтачивания фасонных поверхностей.

По направлению подачи (рис.2) резцы делятся на:


  • правые, работающие с подачей справа на лево;

  • левые, работающие с подачи слева направо.

Рис.2. Определение направления подачи.

А - левый, Б - правый.

По конструкции бывают:


  • Прямые - резцы, у которых ось головки резца является продолжением или параллельна оси державки.

  • Отогнутые - резцы, у которых ось головки резца наклонена вправо или влево от оси державки.

  • Изогнутые - резцы, у которых ось державки при виде сбоку изогнута.

  • Оттянутые - резцы, у которых рабочая часть (головка) уже державки.

  • Конструкции токарей- и конструкторов-новаторов (частные случаи) и прочие.

  • Конструкции Трутнева - с отрицательным передним углом γ, для обработки весьма твердых материалов.

  • Конструкции Меркулова - с повышенной стойкостью.

  • Конструкции Невеженко - с повышенной стойкостью.

  • Конструкции Шумилина - с радиусной заточкой на передней поверхности, применяются на высоких скоростях обработки.

  • Конструкции Лакура - с повышенной виброустойчивостью, которая достигается тем, что главная режущая кромка расположена в одной плоскости с нейтральной осью стержня резца.

  • Конструкции Борткевича - имеет криволинейную переднюю поверхность, что обеспечивает завивание стружки и фаску, упрочняющую режущую кромку. Предназначен для получистовой и чистовой обработки стальных деталей, а также для обточки и подрезки торцов.

  • Расточный резец Семинского - высокопроизводительный расточный резец.

  • Расточный резец «улитка» Павлова - высокопроизводительный расточный резец.

  • Резьбонарезной резец Бирюкова.

По сечению стержня бывают:


  • прямоугольные.

  • квадратные.

  • круглые.

По способу изготовления бывают:


  • цельные - это резцы, у которых головка и державка изготовлены из одного материала.

  • составные - режущая часть резца выполняется в виде пластины, которая определённым образом крепится к державке из конструкционной углеродистой стали. Пластинки из твердого сплава и рапида припаиваются или крепятся механически.

По характеру обработки бывают:


  • обдирочные (черновые).

  • чистовые. Чистовые резцы отличаются от черновых увеличенным радиусом закругления вершины, благодаря чему шероховатость обработанной поверхности уменьшается.

  • резцы для тонкого точения.

По виду обработки

По применяемости на станках резцы разделяются на:


  • токарные

  • строгальные

  • долбежные

Выводы:

Цель работы: Изучить геометрические параметры токарных резцов.

Теоретическая часть

Из всех видов токарных резцов наиболее распространенными являются проходные резцы. Они предназначены для точения наружных поверхностей, подрезки торцов, уступов и т.д.

Рис. 1. Основные типы токарных резцов: а – проходной прямой;
б – проходной отогнутый; в – проходной упорный; г – отрезной

Проходные прямые резцы предназначены для обработки наружных поверхностей с продольной подачей (рис. 1, а).

Проходной отогнутый резец наряду с обтачиванием с продольной подачей может применяться для подрезания торцев с поперечной подачей (рис. 1, б).

Проходной упорный резец применяется для наружного обтачивания с подрезкой уступа под углом 90° к оси (рис. 1, в).

Отрезной резец предназначен для отрезания частей заготовок и протачивания кольцевых канавок (рис. 1, г).

Для определения углов резца установлены понятия: плоскость резания и основная плоскость. Плоскостью резания называют плоскость, касательную к поверхности резания и проходящую через главную режущую кромку резца.

Основной плоскостью называют плоскость, параллельную направлению продольной и поперечной подач; она совпадает с нижней опорной поверхностью резца.

Главные углы (рис.2.) измеряются в главной секущей плоскости.

Рис.2. Главная секущая плоскость. [ 1 ]

Главные углы измеряются в главной секущей плоскости.

Сумма углов α+β+γ=90°.


  • Главный задний угол α - угол между главной задней поверхностью резца и плоскостью резания. Служит для уменьшения трения между задней поверхностью резца и деталью. С увеличением заднего угла шероховатость обработанной поверхности уменьшается, но при большом заднем угле резец может сломаться. Следовательно чем мягче металл, тем больше должен быть угол.

  • Угол заострения β - угол между передней и главной задней поверхностью резца. Влияет на прочность резца, которая повышается с увеличением угла.

  • Главный передний угол γ - угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания, проведённой через главную режущую кромку. Служит для уменьшения деформации срезаемого слоя. С увеличением переднего угла облегчается врезание резца в металл, уменьшается сила резания и расход мощности. Резцы с отрицательным γ применяют для обдирочных работ с ударной нагрузкой. Преимущество таких резцов на обдирочных работах заключается в том, что удары воспринимаются не режущей кромкой, а всей передней поверхностью.

  • Угол резания δ=α+β.
Вспомогательные углы измеряются во вспомогательной секущей плоскости.

  • Вспомогательный задний угол α 1 - угол между вспомогательной задней поверхностью резца и плоскостью, проходящей через его вспомогательную режущую кромку перпендикулярно основной плоскости.

  • Вспомогательный передний угол γ 1 - угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания, проведённой через вспомогательную режущую кромку

  • Вспомогательный угол заострения β 1 - угол между передней и вспомогательной задней плоскостью резца.

  • Вспомогательный угол резания δ 1 =α 1 +β 1 .

Методика измерения углов

Углы резца измеряют с помощью универсального настольного угломера, состоящего из основания, в котором закреплена вертикальная стойка с измерительным устройством. При настройке угломера измерительное устройство перемещают по вертикальной стойке и в нужном положении фиксируют стопорным винтом.

Для измерения главного переднего угла g планку угольника b поворачивают до соприкосновения с передней поверхностью резца. При этом риска на указателе покажет значение угла (рис. 3).

При измерении главного заднего угла a пользуются вертикальной планкой угольника a, которой касаются главной задней поверхности резца.

Необходимо помнить, что главные углы резца a и g измеряют в плоскости нормальной к проекции главной режущей кромки на основную плоскость. Полученные значения заносят в таблицу 1.

Рис. 3. Схема измерения углов в главной секущей плоскости.

Перед измерением углов в плане j и j 1 измерительное устройство поворачивают на 180° и снова фиксируют (рис. 4). При измерении главного угла в плане j резец прижимают к упору стола, а поворотную планку разворачивают до соприкосновения с главной режущей кромкой. Тогда указатель покажет значение угла j .

Аналогично измеряют вспомогательный угол в плане j 1 , только в этом случае поворотную планку разворачивают до соприкосновения со вспомогательной режущей кромкой.

Рис. 4. Схема измерения углов в основной плоскости.

Для определения величины угла 1 , регулируя положение измерительного устройства по высоте, горизонтальную планку приводят в соприкосновение с главной режущей кромкой без зазора (рис. 5).

Рис. 5. Схема измерения угла 1.

С целью повышения прочности режущей части резца предусматривается также радиус скругления его вершины в плане: r = 0,1...3,0 мм. При этом большее значение радиуса применяется при обработке жестких заготовок, так как с увеличением этого радиуса возрастает радиальная составляющая силы резания.

Расчётная часть

Рис. 6. Углы проходного резца.

Таблица- 1. Значения углов резцов




Наименование резцов

Основные параметры

ГОСТ

hxb

L

n

R

Тип пластин по

ГОСТ 25395-82


10 0

0 0

1.

Токарный проходной отогнутый резец (рис.1)

ГОСТ 18877-73. Настоящий стандарт распространяется на токарные проходные отогнутые резцы общего назначения, с углами φ =45°,

φ 1 =45°, с напаянными пластинами из твердого сплава.


Пример условного обозначения

hxb

L

l

a

Тип пластин по

ГОСТ 25395-82


1

2

2.

Токарный отрезной резец (рис.2)

ГОСТ 18884-73. Настоящий стандарт распространяется на токарные отрезные резцы общего назначения, с углами φ =90°, φ =100°, с напаянными пластинами из твердого сплава.

Пример условного обозначения







Токарный проходной отогнутый резец (рис.1)

Токарный отрезной резец (рис.2)

Выводы:

Цель работы: Определить зависимость коэффициента усадки от режима резания.

Теоретическая часть

Стружка - это деформированный и отделенный в результате обработки резанием поверхностный слой материала заготовки.

В результате деформации срезаемого металла обычно оказывается, что длинна срезанной стружки короче пути, пройденного резцом.

Это явление профессор И. А. Тиме назвал усадкой стружки. При укорочении стружки размеры ее поперечного сечения изменяются по сравнению с размерами поперечного сечения срезаемого слоя металла. Толщина стружки оказывается больше толщины срезаемого слоя, а ширина стружки примерно соответствует ширине среза.

Чем больше деформация срезаемого слоя, тем больше отличается длинна стружки от длины пути, пройденного резцом.

Усадку стружки можно характеризовать коэффициентом усадки I, представляющим собой отношение длины пути резца L к длине стружки l:

(1)

На коэффициент усадки стружки основное влияние оказывают род и механические свойства материалов обрабатываемой детали, передний угол инструмента, толщина срезаемого слоя, скорость резания и применяемая смазочно-охлаждающая жидкость.

Коэффициент усадки стружки не может служить количественным показателем степени деформированности срезаемого слоя. На рис. 1 изображена связь между коэффициентом усадки и относительным сдвигом при различных передних углах инструмента. Хотя с увели­чением коэффициента усадки в пределах его значений, встречающихся при применяемых режимах резания, относительный сдвиг при постоянном переднем угле возрастает, но при различных передних углах одному и тому же коэффициенту усадки соответствует различная ве­личина относительного сдвига.